МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНТРАНС РОССИИ) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ) ФГБОУ ВО «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (ФГБОУ ВО СПбГУ ГА)

УТВЕРЖДАЮ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ФИЗИКА

Направление подготовки **25.03.04** Эксплуатация аэропортов и обеспечение полетов воздушных судов

Направленность программы (профиль) Организация аэропортовой деятельности

Квалификация выпускника: **(бакалавр)**

Форма обучения: **очная**

Санкт-Петербург 2017

1 Цели освоения дисциплины

Целями освоения дисциплины «Физика» являются: формирование у студентов современного естественнонаучного мировоззрения, освоение ими современного стиля физического мышления, выработка навыков использования фундаментальных законов, теорий классической и современной физики, а также методов физического исследования как основы системы профессиональной деятельности.

Задачами дисциплины являются:

- -изучение основных физических явлений;
- овладение фундаментальными понятиями, законами и теориями классической и современной физики, а также методами практического приложения физических знаний;
- формирование физического мышления и основ естественнонаучной картины мира;
- овладение приемами и методами решения конкретных практических задач из разных областей физики.

Студенты, изучающие физику, должны знать основы математического анализа, линейной алгебры, тригонометрии, дифференциального и интегрального исчисления.

Дисциплина обеспечивает подготовку выпускника к следующим видам профессиональной деятельности:

- эксплуатационно-технологическая деятельность;
- организационно-управленческая деятельность.

2 Место дисциплины в структуре ОПОП ВО

Дисциплина «Физика» представляет собой дисциплину, относящуюся к базовой части математического и естественного цикла дисциплин.

Дисциплина «Физика» базируется на результатах обучения, полученных при изучении дисциплин: «Химия».

Дисциплина «Физика» является обеспечивающей для дисциплин: «Механика», «Электротехника», «Электроника», «Метрология, стандартизация и сертификация», «Материаловедение и технология конструкционных материалов», «Конструкция и эксплуатация воздушных судов», «Безопасность жизнедеятельности», «Механизация и автоматизация технологических процессов», «Электросветотехническое обеспечение полетов», «Авиационная электросвязь», «Радиотехническое обеспечение полётов», «Производственная безопасность»,.

Дисциплина изучается во 2-ом и 3-ем семестрах.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс освоения дисциплины «Физика» направлен на формирование следующих компетенций:

№ п/п	Перечень и код	Перечень планируемых результатов
1	компетенций	обучения по дисциплине
1.	Способность проводить	Знать:
	доказательства утверждений как	- методы теоретического и
	составляющей когнитивной и	экспериментального исследования в
	коммуникативной функции (ОК-39)	физике.
		Уметь:
		- использовать физические законы при
		анализе и решении проблем
		профессиональной деятельности.
		Владеть:
		- методами построения математической
		модели типовых профессиональных задач
		и содержательной интерпретации
		полученных результатов.
2.	Владение методами анализа и синтеза	Знать:
_,	изучаемых явлений и процессов (ОК-	- основные математические методы
	40)	решения профессиональных задач;
		- методы теоретического и
		экспериментального исследования в
		физике.
		Уметь:
		- применять математические методы при
		решении типовых профессиональных
		задач;
		- решать типовые задачи по основным
		разделам курса физики, используя методы
		математического анализа;
		- использовать физические законы при
		анализе и решении проблем
		профессиональной деятельности.
		Владеть:
		- методами построения математической
		модели типовых профессиональных задач
		и содержательной интерпретации
		полученных результатов.
		- методами проведения физических
		измерений, методами корректной оценки
		погрешностей при проведении
		физического эксперимента.

3.	Способность и готовность осознавать роль естественных наук в развитии науки, техники и технологии (ОК-41)	Знать: - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности. Владеть: - методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов; - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
4.	Способность и готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ОК-42)	Знать: - физические основы механики; - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - математические модели простейших систем и процессов в естествознании и технике; - основные математические методы решения профессиональных задач; - методы теоретического и экспериментального исследования в физике. Уметь: - употреблять математическую символику для выражения количественных и качественных отношений объектов; - применять математические методы при решении типовых профессиональных задач; - решать типовые задачи по основным разделам курса физики, используя методы математического анализа; - использовать физические законы при анализе и решении проблем профессиональной деятельности.

		Pradami
		Владеть:
		- методами построения математической
		модели типовых профессиональных задач
		и содержательной интерпретации
		полученных результатов;
		- методами проведения физических
		измерений, методами корректной оценки
		погрешностей при проведении
		физического эксперимента.
5.	Владение культурой	Знать:
	профессиональной безопасности,	- основные понятия, законы и модели
	способностью идентифицировать	механики, электричества и магнетизма,
	опасности и оценивать риски в сфере	колебаний и волн, квантовой физики,
	своей профессиональной (ПК-11)	молекулярной физики и термодинамики,
		оптики, атомной и ядерной физики.
		Уметь:
		- использовать физические законы при
		анализе и решении проблем
		профессиональной деятельности.
		Владеть:
		- методами построения математической
		модели типовых профессиональных задач
		и содержательной интерпретации
		полученных результатов;
		- методами проведения физических
		измерений, методами корректной оценки
		погрешностей при проведении
		физического эксперимента.
6.	Способность и готовность	Знать:
"	эксплуатировать измерительную	
	технику и контрольно-поверочную	механики, электричества и магнетизма,
	аппаратуру в соответствии с	колебаний и волн, квантовой физики,
	нормативными правовыми актами,	молекулярной физики и термодинамики,
	устанавливающими правила	оптики, атомной и ядерной физики;
	эксплуатации и технического	- методы теоретического и
	обслуживания средств	экспериментального исследования в
	метрологического обеспечения	физике.
	полетов воздушных судов (ПК-15)	1
	(111 10)	Уметь:
		- использовать физические законы при
		анализе и решении проблем
		профессиональной деятельности.
		1 1
		Владеть:
		- методами построения математической
		модели типовых профессиональных задач
		и содержательной интерпретации
1		полученных результатов;
		y
		- методами проведения физических

		погрешностей при проведении физического эксперимента.
7.	Способность эксплуатировать радиотехническое оборудование и средства связи в соответствии с нормативными правовыми актами, устанавливающими правила эксплуатации наземных средств радиотехнического обеспечения полетов и авиационной электросвязи (ПК-17)	Знать: - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального исследования в физике.
		Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности.
		Владеть: - методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов; - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
8.	Способность эксплуатировать светосигнальное и электротехническое оборудование, средства централизованного снабжения электроэнергией аэропортов и их объектов в соответствии с нормативными правовыми актами, устанавливающими правила эксплуатации наземных средств электросветотехнического обеспечения полетов воздушных судов (ПК-18)	Знать: - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального исследования в физике. Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности.
		Владеть: - методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов; - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
9.	Способность и готовность эксплуатировать энергетическое	Знать: - основные понятия, законы и модели

	оборудование, электрические и тепловые сети (ПК-19)	механики, электричества и магнетизма, и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального исследования в физике.
		Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности.
		Владеть: - методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов; - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
10.	Способность эксплуатировать средства приема, хранения, транспортировки, очистки, контроля качества, выдачи и заправки воздушных судов горючесмазочными (ПК-20)	Знать: - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики.
		Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности; - осуществлять в общем виде оценку воздействия авиационно-транспортного производства на окружающую среду с учетом специфики природно-климатических условий.
		Владеть: - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
11.	Способность и готовность осуществлять проверку работоспособности эксплуатируемого оборудования (ПК-25)	Знать: - основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального исследования в

		физике.
		Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности.
12.	Готовность осуществлять приемку и ввод в эксплуатацию объектов	Владеть: - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента. Знать: - основные понятия, законы и модели
	аэропорта, технологического оборудования и технических средств обеспечения полетов (ПК-30)	механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики.
		Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности; - осуществлять в общем виде оценку воздействия авиационно-транспортного производства на окружающую среду с учетом специфики природно-климатических условий.
		Владеть: - методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
13.	Готовность участвовать в разработке и реализации мероприятий по повышению эффективности деятельности воздушного транспорта, обеспечению безопасности полетов воздушных судов, обеспечению авиационной безопасности и предотвращению актов незаконного вмешательства в деятельность авиации, обеспечению охраны окружающей среды, обеспечению качества работ и услуг (ПК-36)	Знать: - методы теоретического и экспериментального исследования в физике факторы, определяющие устойчивость биосферы. Уметь: - использовать физические законы при анализе и решении проблем профессиональной деятельности; - осуществлять в общем виде оценку воздействия авиационно-транспортного производства на окружающую среду с учетом специфики природно-климатических условий.
		Владеть:

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов методами проведения физических измерений, методами корректной оценки погрешностей при проведении
погрешностей при проведении физического эксперимента.

4 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 8 зачетных единиц, 288 академических часов.

Помусуствения	Всего	Семестры	I
Наименование	часов	2	3
Общая трудоемкость дисциплины (модуля)	288	144	144
Контактная работа:	128	72	56
лекции	64	36	28
практические занятия	50	30	20
семинары	-	-	-
лабораторные работы	14	6	8
курсовой проект (работа)	-	-	-
Самостоятельная работа студента	124	63	61
Промежуточная аттестация	36	9	27

5 Содержание дисциплины

5.1. Соотнесения тем (разделов) дисциплины и формируемых компетенций.

			Компетенции										ele .			
Разделы дисциплины	Количество часов	OK-39	OK-40	OK-41	OK-42	IIK-11	IIK-15	ПК-17	ПК-18	ПК-19	ПК-20	ПК-25	ПК-30	ПК-36	Образовательные технологии	Оценочные средства
Раздел 1. Механика	49															
Тема 1.1.															ВК,	
Кинематика и															Л,	РДЗ,
динамика	10	+	+	+	+	+						+		+	ПЗ,	ЗЛР,
материальной															ЛЗ,	T
точки															CPC	
Тема 1.2. Работа															Л,	РДЗ,
и энергия	7	+	+	+	+										ПЗ,	T
	,		7	7	T										ЛР,	
															CPC	

Тема 1.3.															Л,	РДЗ,
Механика	7	+	+	+	+	+						+	+	+	П3,	тдэ, Т
	,		—									_			CPC	1
твердого тела Тема 1.4. Законы															Л,	рпз
	7	+	+	+										+	Л, ПЗ,	РДЗ, Т
сохранения в	,		+		+							+			CPC	1
механике Тема 1.5.																рпо
															Л,	РДЗ, Т
Движение в	4	+	+	+	+										П3,	1
неинерциальной															CPC	
системе отсчета															П	рпо
Тема 1.6.	7	١.													Л,	РДЗ,
Механика	/	+	+	+	+										ПЗ,	T
сплошных сред															СРС	рпр
Тема 1.7.															Л,	РДЗ,
Элементы	7														ПЗ,	T
специальной	7	+	+	+											CPC	
теории																
относительности																
Раздел 2.																
Молекулярная																
физика и	41															
термодинамик																
a				1	1	1	1		Ι	1	1	Ι		I		1
Тема 2.1.															Л,	РДЗ,
Первый закон	12	+	+	+	+	+	+			+	+			+	П3,	3ЛР,
(первое начало)										·					Л3,	T T
термодинамики															CPC	
Тема 2.2.															Л,	РДЗ,
Кинетическая	10	+	+	+	+	+	+			+					ПЗ,	T
теория газов															CPC	
Тема 2.3. Второй															Л,	РДЗ,
закон (второе	9	+	+	+	+		+			+					ПЗ,	T
начало)		'	'	'	'		'			'					CPC	
термодинамики																
Тема 2.4.															Л,	РДЗ,
Реальные газы.	10	+	+	+	+		+			+	+		+	+	ПЗ,	T
Жидкое	10	+	+	+	+		+			+	+			+	CPC	
состояние																
Раздел 3.																
Электродинами	45															
ка																
Тема 3.1.															Л,	РДЗ,
Электростатика	8	+	+	+	+	+		+	+	+		+		+	ПЗ,	T
			L												CPC	
		1	1											1	1	

Тема 3.2.Электрическое поле в веществе	7	+	+	+	+		+	+	+	+		+	Л, ПЗ, СРС	РДЗ, Т
Тема 3.3. Электрический ток	8	+	+	+	+	+	+	+	+	+	+	+	Л, ПЗ, СРС	РДЗ, Т
Тема 3.4. Магнитное поле	10	+	+	+	+	+	+	+		+		+	Л, ПЗ, ЛЗ, СРС	РДЗ, ЗЛР, Т
Тема 3.5. Электромагнитн ая индукция	7	+	+	+	+	+	+	+		+		+	Л, ПЗ, СРС	РДЗ, Т
Тема 3.6. Уравнения Максвелла	5	+	+	+									Л, ПЗ, СРС	РДЗ, Т
Раздел 4. Физика колебаний и волн	28													
Тема 4.1. Колебания	11	+	+	+	+	+	+			+		+	Л, ПЗ, ЛЗ, СРС	РДЗ, ЗЛР, Т
Тема 4.2. Упругие волны	9	+	+	+	+	+	+						Л, ПЗ, СРС	РДЗ, Т
Тема 4.3. Электромагнитн ые волны	8	+	+	+	+		+						Л, ПЗ, СРС	РДЗ, Т
Раздел 5. Оптика	52													
Тема 5.1. Основные законы оптики	8	+	+	+	+	+		+					Л, ПЗ, СРС	РДЗ, Т
Тема 5.2. Геометрическая оптика	10	+	+	+	+	+		+				+	Л, ПЗ, ЛЗ, СРС	РДЗ, ЗЛР, Т
Тема 5.3. Интерференция света	7	+	+	+	+								Л, ПЗ, СРС	РДЗ, Т
Тема 5.4. Дифракция	7	+	+	+	+								Л, П3,	РД3, Т

света											CPC	
Тема 5.5. Поляризация света	10	+	+	+	+						Л, ПЗ, ЛЗ, СРС	РДЗ, ЗЛР, Т
Тема 5.6. Взаимодействие электромагнитн ых волн с веществом	10	+	+	+	+					+	Л, ПЗ, ЛЗ, СРС	РДЗ, ЗЛР, Т
Раздел 6. Элементы квантовой механики и атомной физики	37											
Тема 6.1. Тепловое излучение	9	+	+	+	+		+			+	Л, ПЗ, СРС	РДЗ, Т
Тема 6.2. Фотоны	6	+	+	+							Л, ПЗ, СРС	РДЗ, Т
Тема 6.3. Боровская теория атома	8	+	+	+							Л, ПЗ, СРС	РДЗ, Т
Тема 6.4. Квантовомехани ческая теория водородного атома	8	+	+	+							Л, ПЗ, СРС	РДЗ,
Тема 6.5. Атомное ядро и элементарные частицы	6	+	+	+							Л, ПЗ, СРС	РДЗ, Т
Итого по дисциплине	252											
Промежуточная аттестация	36											
Всего по дисциплине	288											

Сокращения: Л – лекция, ПЗ- практические занятия, СРС – самостоятельная работа студента, ВК – входной контроль, У – устный опрос, РДЗ – решение задач

для самостоятельной работы, $3\Pi P -$ защита лабораторной работы, T - тест, $\Pi -$ дискуссия, $\Pi M -$ исследовательский метод, $\Pi M -$ работа в малых группах.

5.2. Разделы дисциплин и виды занятий

Наименование раздела, темы	Л	ПЗ	С	ЛР	CPC	КР	Всего
дисциплины		10		2	2.1		часов
Раздел 1. Механика	14	12	-	2	21	-	49
Тема 1.1. Кинематика и динамика	2	2	_	2	4	_	10
материальной точки					2		-
Тема 1.2. Работа и энергия	2	2	-	-	3	-	7
Тема 1.3. Механика твердого тела	2	2	-	-	3	-	7
Тема 1.4. Законы сохранения в механике	2	2	-	-	3	-	7
Тема 1.5. Движение в неинерциальной	2	_			2	_	4
системе отсчета				_	2	_	7
Тема 1.6. Механика сплошных сред	2	2	-	-	3	-	7
Тема 1.7. Элементы специальной	2	2			3		7
теории относительности	2	2	-	_	3	ı	/
Раздел 2. Молекулярная физика и	10	8		2	21		41
термодинамика	10	O		2	21	1	41
Тема 2.1. Первый закон (первое	2	2		2	6		12
начало) термодинамики	2	2	-	2	O	ı	12
Тема 2.2. Кинетическая теория газов	3	2	-	-	5	-	10
Тема 2.3. Второй закон (второе начало)	2	2			5		9
термодинамики	4	2	-	-	3	ı	9
Тема 2.4. Реальные газы. Жидкое	3	2			5		10
состояние	3	2	-	-	3	ı	10
Раздел 3. Электродинамика	12	10	-	2	21	ı	45
Тема 3.1. Электростатика	2	2	-	_	4	-	8
Тема 3.2. Электрическое поле в	2	2			3		7
веществе	2	2	-	-	3	-	/
Тема 3.3. Электрический ток		2	-	-	4	-	8
Тема 3.4. Магнитное поле		2	-	2	4	-	10
Тема 3.5. Электромагнитная индукция		2	-		3	-	7
Тема 3.6. Уравнения Максвелла		-	-	-	3	-	5
Итого за 2 семестр:		30	-	6	63	-	135
Раздел 4. Физика колебаний и волн	6	4	-	2	16		28
Тема 4.1. Колебания	2	2	-	2	5	-	11

Наименование раздела, темы	Л	пэ	<u> </u>	пр	CDC	I/D	Всего
дисциплины		П3	C	ЛР	CPC	КР	часов
Тема 4.2. Упругие волны	2	2	-	-	5	-	9
Тема 4.3. Электромагнитные волны	2	1	-	-	6	-	8
Раздел 5. Оптика	12	10	-	6	24	-	52
Тема 5.1. Основные законы оптики	2	2	-	-	4	ı	8
Тема 5.2. Геометрическая оптика	2	2	-	2	4	-	10
Тема 5.3. Интерференция света	2	1	-	-	4	-	7
Тема 5.4. Дифракция света	2	1	-	-	4	-	7
Тема 5.5. Поляризация света	2	2	-	2	4	-	10
Тема 5.6. Взаимодействие	2	2		2	4		10
электромагнитных волн с веществом	2	2	_	2	4	1	10
Раздел 6. Элементы квантовой	10	6			21		37
механики и атомной физики	10	U		_		-	37
Тема 6.1. Тепловое излучение	2	2	-	-	5	-	9
Тема 6.2. Фотоны	2		-	-	4	-	6
Тема 6.3. Боровская теория атома	2	2	-	-	4	-	8
Тема 6.4. Квантовомеханическая	2	2			4		8
теория водородного атома		2	-	-	4	ı	8
Тема 6.5. Атомное ядро и	2				4		6
элементарные частицы	2	-	-	-	4	ı	O
Итого за 3 семестр: 28 20 - 8 61 -				-	117		
Итого по дисциплине						252	
Промежуточная аттестация						36	
Всего по дисциплине						288	

5.3 Содержание дисциплины

Раздел 1. Механика

Тема 1.1. Кинематика и динамика материальной точки

Уравнения кинематики. Траектория. Перемещение. Скорость и ускорение материальной точки. Законы Ньютона. Импульс. Закон изменения полного импульса. Движение тел переменной массы.

Тема 1.2. Работа и энергия

Механическая работа. Кинетическая энергия. Потенциальная сила. Потенциальная энергия. Закон изменения механической энергии.

Тема 1.3. Механика твердого тела

Вращательное движение. Угловая скорость. Угловое ускорение. Соотношение между линейными и угловыми характеристиками. Момент силы относительно оси. Момент импульса. Момент инерции. Теорема Гюйгенса-Штейнера. Работа силы, приложенной к вращающемуся телу. Кинетическая

энергия вращающегося тела. Основной закон динамики вращательного движения твердого тела.

Тема 1.4. Законы сохранения в механике

Законы сохранения импульса, механической энергии, момента импульса. Связь законов сохранения с симметриями пространства и времени. Движение в поле центральной силы. Законы Кеплера.

Тема 1.5. Движение в неинерциальной системе отсчета

Кинематика в неинерциальной системе отсчета. Силы инерции. Центробежная сила инерции. Сила Кориолиса.

Тема 1.6. Механика сплошных сред

Деформации твердого тела. Закон Гука. Уравнение неразрывности. Уравнение Бернулли. Вязкость. Формула Ньютона. Метод Пуазейля. Метод Стокса. Эффект Магнуса. Аэродинамическая сила крыла.

Тема 1.7. Элементы специальной теории относительности

Преобразования Галилея. Принцип относительности Галилея. Постулаты специальной теории относительности. Преобразования Лоренца. Релятивистское сокращение длины. Релятивистское замедление времени. Относительность одновременности событий. Пространственно-временной интервал. Формулы релятивисткой динамики. Полная энергия. Связь между массой и энергией.

Раздел 2. Молекулярная физика и термодинамика

Тема 2.1. Первый закон (первое начало) термодинамики

Статистический и термодинамический методы исследования. Термодинамические параметры. Уравнение состояния. Термодинамический процесс. Уравнение состояния идеального газа. Внутренняя энергия системы. Теплота и работа. Первый закон термодинамики. Теплоемкость вещества. Применения первого начала термодинамики к изопроцессам в идеальном газе.

Тема 2.2. Кинетическая теория газов

Основное уравнение кинетической теории газов. Закон Максвелла о распределении молекул по скоростям и энергиям. Распределение частиц в потенциальном силовом поле (распределение Больцмана). Средняя длина свободного пробега молекул. Явления переноса в газах. Вязкость газов. Теплопроводность газов. Диффузия в газах.

Тема 2.3. Второй закон (второе начало) термодинамики

Круговые процесса (циклы). Цикл Карно. Обратимые и необратимые процессы. Второй закон термодинамики. Энтропия. Статистическое истолкование второго закона термодинамики. Понятие о третьем законе термодинамики.

Тема 2.4. Реальные газы. Жидкое состояние

Силы межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Понятие о фазовых переходах. Свойства жидкостей. Поверхностное натяжение жидкостей. Смачивание и капиллярные явления. Испарение и кипение жидкостей.

Раздел 3. Электродинамика

Тема 3.1. Электростатика

Закон сохранения заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Потенциал. Напряженность как градиент потенциала. Поток вектора напряженности. Теорема Остроградского-Гаусса для электрического поля в вакууме. Применение теоремы Остроградского-Гаусса к расчету электрических полей в вакууме.

Тема 3.2. Электрическое поле в веществе

Дипольные моменты молекул диэлектрика. Поляризация диэлектриков. Поляризованность. Электрическое поле в диэлектрике. Электрическое смещение. Сегнетоэлектрики. Распределение зарядов в проводнике. Электрическая емкость уединенного проводника. Взаимная электрическая емкость двух проводников. Электрическая емкость плоского, цилиндрического и сферического конденсаторов. Энергия электрического поля. Объемная плотность энергии электрического поля.

Тема 3.3. Электрический ток

Сила и плотность электрического тока. Закон Ома для однородного участка цепи. Сопротивление и его зависимость от температуры. Закон Ома для неоднородного участка цепи. Закон Ома для замкнутой цепи. Работа и мощность тока. Закон Джоуля-Ленца. Электродвижущая сила источника тока. Разветвленные цепи. Правила Кирхгофа. Электронная теория проводимости.

Тема 3.4. Магнитное поле

Закон Био-Савара-Лапласа. Магнитное поле в центре кругового проводника с током. Магнитное поле прямого тока. Закон Ампера. Закон полного тока. Магнитное поле соленоида. Поток магнитной индукции. Сила Лоренца. Движение заряженных частиц в магнитном поле. Эффект Холла. Магнитный момент. Гипотеза Ампера. Намагниченность. Напряженность магнитного поля. Диамагнетики и парамагнетики в магнитном поле. Ферромагнетики.

Тема 3.5. Электромагнитная индукция

Явление электромагнитной индукции. Закон Фарадея. Правило Ленца. Природа ЭДС индукции. ЭДС индукции в движущихся проводниках. Самоиндукция. Индуктивность контура. Импульс напряжения при размыкании цепи. Взаимная индукция. Трансформаторы. Энергия магнитного поля. Объемная плотность энергии магнитного поля.

Тема 3.6. Уравнения Максвелла

Общая характеристика теории Максвелла. Дивергенция и ротор векторного поля. Ток смещения. Уравнения Максвелла в дифференциальной и интегральной формах.

Раздел 4. Физика колебаний и волн

Тема 4.1. Колебания

Гармонические колебания. Гармонические осцилляторы. Уравнение гармонических колебаний. Сложение гармонических колебаний. Свободные колебания. Энергия свободных колебаний. Затухающие колебания. Вынужденные колебания.

Тема 4.2. Упругие волны

Распространение волн в упругой среде. Уравнения плоской и сферической волн. Уравнение плоской волны, распространяющейся в произвольном направлении. Волновое уравнение. Скорость упругих волн в твердой среде. Энергия упругой волны. Стоячие волны. Колебания струны. Звук. Скорость звука в газах. Эффект Доплера для звуковых волн

Тема 4.3. Электромагнитные волны

Волновое уравнение для электромагнитного поля. Плоская электромагнитная волна. Экспериментальное исследование электромагнитных волн. Энергия электромагнитных волн. Импульс электромагнитного поля. Излучение диполя

Раздел 5. Оптика

Тема 5.1. Основные законы оптики

Развитие представлений о природе света. Принцип Ферма. Скорость света. Световой поток. Фотометрические величины и их единицы. Фотометрия.

Тема 5.2. Геометрическая оптика

Центрированная оптическая система. Сложение оптических систем. Преломление на сферической поверхности. Линза. Погрешности оптических систем. Оптические приборы. Светосила объектива.

Тема 5.3. Интерференция света

Световая волна. Интерференция световых волн. Способы наблюдения интерференции света. Интерференция света при отражении от тонких пластинок. Применения интерференции света.

Тема 5.4. Дифракция света

Принцип Гюйгенса — Френеля. Зоны Френеля. Дифракция Френеля от простейших преград. Дифракция Фраунгофера от щели. Дифракционная решетка.

Разрешающая сила объектива.

Тема 5.5. Поляризация света

Естественный и поляризованный свет. Поляризация при отражении и преломлении. Поляризация при двойном лучепреломлении. Интерференция поляризованных лучей. Эллиптическая поляризация. Кристаллическая пластинка между двумя поляризаторами. Искусственное двойное лучепреломление. Вращение плоскости поляризации.

Тема 5.6. Взаимодействие электромагнитных волн с веществом Дисперсия света. Групповая скорость. Элементарная теория дисперсии. Поглощение света. Рассеяние света. Эффект Вавилова — Черенкова.

Раздел 6. Элементы квантовой механики и атомной физики

Тема 6.1. Тепловое излучение

Тепловое излучение и люминесценция. Закон Кирхгофа. Закон Стефана— Больцмана и закон Вина. Формула Рэлея—Джинса. Формула Планка. Оптическая пирометрия.

Тема 6.2. Фотоны

Тормозное рентгеновское излучение. Фотоэффект. Опыт Боте. Фотоны. Эффект Комптона.

Тема 6.3. Боровская теория атома

Закономерности в атомных спектрах. Модель атома Томсона. Опыты по рассеянию альфа-частиц. Ядерная модель атома. Постулаты Бора. Опыт Франка и Герца. Элементарная боровская теория водородного атома.

Тема 6.4. Квантовомеханическая теория водородного атома Гипотеза де-Бройля. Волновые свойства вещества. Уравнение Шредингера. Квантовомеханическое описание движения микрочастиц. Свойства волновой функции. Квантование. Частица в бесконечно глубокой одномерной потенциальной яме. Прохождение частиц через потенциальный барьер.

Тема 6.5. Атомное ядро и элементарные частицы Состав и характеристика атомного ядра. Масса и энергия связи ядра. Радиоактивность. Ядерные реакции. Деление ядер. Термоядерные. Классы элементарных частиц и виды взаимодействий. Частицы и античастицы. Нейтрино. Систематика элементарных частиц.

5.4 Практические занятия

Номер		Т
раздела,	To	Трудоё мкость
темы	Тематика практических занятий	
дисципл	(семинаров)	(часы)
ины		
	2 семестр	
1.1	ПЗ №1 Кинематика и динамика материальной точки	2
1.2	ПЗ №2 Работа и энергия	2
1.3	ПЗ №3 Механика твердого тела	2
1.4	ПЗ №4 Законы сохранения в механике	2
1.6	ПЗ №5 Механика сплошных сред	2
1.7	ПЗ №6 Элементы специальной теории относительности	2
2.1	ПЗ №7 Первый закон (первое начало) термодинамики	2
2.2	ПЗ №8 Кинетическая теория газов	2
2.3	ПЗ №9 Второй закон (второе начало) термодинамики	2
2.4	ПЗ №10 Реальные газы. Жидкое состояние	2
3.1	ПЗ №11 Электростатика	2
3.2	ПЗ №12 Электрическое поле в веществе	2
3.3	ПЗ №13 Электрический ток	
3.4	ПЗ №14 Магнитное поле	
3.5	ПЗ №15 Электромагнитная индукция	
Итого за 2 семестр		28
	3 семестр	
4.1	ПЗ №1 Колебания	2
4.2	ПЗ №2 Упругие волны	2
5.1	ПЗ №3 Основные законы оптики	2
5.2	ПЗ №4 Геометрическая оптика	2
5.3-5.4	ПЗ №5 Интерференция и дифракция света	2
5.5	ПЗ №6 Поляризация света	2
5.6	ПЗ №7 Взаимодействие электромагнитных волн с	2
	веществом	
6.1	ПЗ №8 Тепловое излучение	2
6.3	ПЗ №9 Боровская теория атома	2
6.4	ПЗ №10 Квантовомеханическая теория водородного	2
	атома	
Итого за 3 семестр		
Итого по дисциплине		48

5.5 Лабораторный практикум

Номер		Трудоё
раздела,	Наименование лабораторных работ	мкость
темы	паименование лаоораторных раоот	(часы)
дисциплины		

Номер раздела, темы дисциплины	Наименование лабораторных работ	Трудоё мкость (часы)	
	2 семестр		
1	ЛР №1 (Исследовательский метод, работа в малых группах) Теория погрешностей, Простейшие измерения	2	
2	ЛР №2 (Исследовательский метод, работа в малых группах) Определение отношения теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме по методу Клемана-Дезорма	2	
3	ЛР №3 (Исследовательский метод, работа в малых группах) Определение горизонтальной составляющей напряженности магнитного поля Земли	2	
Итого за 2 семестр			
	3 семестр		
4	ЛР №1 (Исследовательский метод, работа в малых группах, работа в малых группах) Определение коэффициента затухания и добротности колебательной системы физического маятника	2	
5	ЛР №2 (Исследовательский метод, работа в малых группах) Определение фокусного расстояния линзы	2	
5	ЛР №3 (Исследовательский метод, работа в малых группах) Исследование свойств поляризованного света	2	
5	ЛР №4 (Исследовательский метод, работа в малых группах) Исследование дисперсии оптического стекла	2	
Итого за 3 семестр		8	
Итого по дисци	иплине	14	

5.6 Самостоятельная работа

Номер раздела	Виды самостоятельной работы	Трудое мкость (часы)	
2 семестр			
1	Изучение теоретического материала [1,2].	10	
1	Самостоятельная работа по решению задач [7].	10	

Номер раздела	Виды самостоятельной работы	Трудое мкость (часы)
	Подготовка к лабораторным работам [1,2,9].	
	Изучение теоретического материала [1,4].	10
2	Самостоятельная работа по решению задач [7].	10
	Подготовка к лабораторным работам [1,4,10].	1
	Изучение теоретического материала [1,3].	10
3	Самостоятельная работа по решению задач [7].	10
	Подготовка к лабораторным работам [1,3,11].	1
Итого за 2 семестр		63
	3 семестр	
	Изучение теоретического материала [1,5,7].	8
4	Самостоятельная работа по решению задач [7].	7
	Подготовка к лабораторным работам [1,5,9].	1
	Изучение теоретического материала [1,5,7].	11
5	Самостоятельная работа по решению задач [7].	10
	Подготовка к лабораторным работам [1,5,7].	3
6	Изучение теоретического материала [1,6].	11
U	Самостоятельная работа по решению задач [7].	10
Итого за 3 семестр		61
Итого по	дисциплине	123

5.7 Курсовые работы

Курсовые работы (проекты) учебным планом не предусмотрены.

6 Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Трофимова, Т. И. **Курс физики** [Текст]: учеб. пособие / Т.И.Трофимова.-М.:Академия, 2008.-558 с.- ISBN 978-5-7695-5782-8. Количество экземпляров 50.
- 2. Савельев, И.В. **Курс общей физики**. В 5-и тт. Том 1. Механика [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург: Лань, 2011. 352 с. Режим доступа: https://e.lanbook.com/book/704. Загл. с экрана (дата обращения 28.02.2015).
- 3. Савельев, И.В. **Курс общей физики**. В 5-и тт. Том 2. Электричество и магнетизм [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон.

- дан. Санкт-Петербург : Лань, 2011. 352 с. Режим доступа: https://e.lanbook.com/book/705.
- 4. Савельев, И.В. Курс общей физики. В 5-и тт. Том 3. Молекулярная физика и термодинамика [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2011. 224 с. Режим доступа: https://e.lanbook.com/book/706.
- 5. Савельев, И.В. Курс общей физики. В 5-и тт. Том 4. Волны. Оптика [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2011. 256 с. Режим доступа: https://e.lanbook.com/book/707.
- 6. Савельев, И.В. Курс общей физики. В 5-и тт. Том 5. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2011. 384 с. Режим доступа: https://e.lanbook.com/book/708.
 - б) дополнительная литература:
- 7. Волькенштейн, В.С. Сборник задач по общему курсу физики [Текст]/В.С.Волькенштейн-С-Пб:Специальная литература, 1997. 328 с. ISBN 5-86457-033-8. Количество экземпляров 80.
- 8. Детлаф, А.А. Справочник по физике для инженеров и студентов вузов [Текст]: справочник / А.А. Детлаф, Б.М.Яворский.- М: Высш.шк. 2002. 718 с. ISBN 978-5-488-01477-0. Количество экземпляров 1.
- 9. Физика. Методические указания по выполнению лабораторных работ по разделу «Механика» [Текст]: методич. указания /В.И.Арбузов [и др.]-С-Пб: Университет ГА, 2012.-140 с. Количество экземпляров 150.
- 10. Физика. Методические указания по выполнению лабораторных работ по разделу «Молекулярная физика и термодинамика» [Текст]: методич. указания /В.И.Арбузов [и др.]-С-Пб: Университет ГА, 2012.-57 с. Количество экземпляров 150.
- 11. Физика. Методические указания по выполнению лабораторных работ по разделу «Электричество и магнетизм» [Текст]: методич. указания /В.И.Арбузов [и др.]-С-Пб: Университет ГА, 2012.-106 с. Количество экземпляров 150.
- 12. Физика. Методические указания по выполнению лабораторных работ по разделу «Оптика» [Текст]: методич. указания /В.И.Арбузов [и др.]-С-Пб: Университет Γ A, 2012.-82 с. Количество экземпляров 150.
- в) перечень ресурсов информационно-телекоммуникационной сети «Интернет»:
- 13. Маtematikam.ru онлайн калькуляторы по математике [Электронный ресурс]/Режим доступа: http://matematikam.ru, свободный (дата обращения 01.03.2018).
- 14. y(x).ru построение графиков функций онлайн [Электронный ресурс]/Режим доступа: http://www.yotx.ru, свободный (дата обращения 01.03.2015).
- г) программное обеспечение (лицензионное), базы данных, информационносправочные и поисковые системы:

- г) программное обеспечение (лицензионное), базы данных, информационно-справочные и поисковые системы:
- 15. Электронно-библиотечная система издательства «Лань» [Электронный ресурс] Режим доступа: http://e.lanbook.com/.
- 16. Электронно-библиотечная система издательства «Юрайт» [Электронный ресурс] Режим доступа: https://biblio-online.ru.

7 Материально-техническое обеспечение дисциплины

Для обеспечения учебного процесса материально-техническими ресурсами используются:

- специализированные лабораторные помещения кафедры физики и химии с соответствующим оборудованием, приборами, лабораторными установками (ауд. 422, 433, 435);
 - компьютер, мультимедийный проектор и экран.

Материалы *INTERNET*, мультимедийные курсы, оформленные с помощью *Microsoft Power Point*, используются при проведении лекционных и практических занятий.

8 Образовательные и информационные технологии

В процессе преподавания дисциплины «Физика» используются классические формы и методы обучения: лекции, практические занятия, лабораторные работы, самостоятельная работа студентов.

В рамках изучения дисциплины предполагается использовать следующие образовательные технологии.

Входной контроль проводится в форме устных опросов с целью оценивания остаточных знаний по ранее изученным дисциплинам или разделам изучаемой дисциплины.

Традиционная лекция составляет основу теоретического обучения в рамках дисциплины и направлена на систематизированное изложение накопленных и актуальных научных знаний. Лекция предназначена для раскрытия состояния и перспектив естественных наук в современных условиях. На лекции концентрируется внимание обучающихся на наиболее сложных и узловых вопросах, стимулируется их активная познавательная деятельность.

Практические занятия по дисциплине проводятся в соответствии с учебнотематическим планом по отдельным группам. Цель практических занятий — закрепить теоретические знания, полученные обучающимися на лекциях и в результате самостоятельного изучения соответствующих разделов рекомендуемой литературы, а также приобрести практические навыки решения задач. Практическое занятие предназначено для более глубокого освоения и анализа тем, изучаемых в рамках данной дисциплины.

Самостоятельная работа студента реализуется в систематизации, планировании, контроле и регулировании его учебно-профессиональной деятельности, а также в активизации собственных познавательно-мыслительных

действий без непосредственной помощи и руководства со стороны преподавателя. Основной целью самостоятельной работы студента является формирование навыка самостоятельного приобретения им знаний по некоторым несложным вопросам теоретического курса, закрепление и углубление полученных знаний, умений и навыков во время лекций и практических занятий. Самостоятельная работа предполагает сочетание самостоятельных теоретических занятий и самостоятельное выполнение практических заданий.

Практические и лабораторные занятия проводятся в интерактивной форме. Здесь применяются такие виды интерактивных занятий как дискуссия, работа в малых группах и исследовательская работа.

Дискуссия используется в практических занятиях. Она представляет собой публичное обсуждение или свободный вербальный обмен знаниями, суждениями, идеями или мнениями по поводу какого-либо спорного вопроса, проблемы. Ее существенными чертами являются сочетание взаимодополняющего диалога и обсуждения-спора, столкновение различных точек зрения, позиций. По сравнению с распространенной в обучении лекционно-семинарской формой обучения дискуссия имеет ряд преимуществ:

- дискуссия обеспечивает активное, глубокое, личностное усвоение знаний. Активное, заинтересованное, эмоциональное обсуждение ведет к осмысленному усвоению новых знаний, может заставить человека задуматься, изменить или пересмотреть свои установки;
- во время дискуссии осуществляется активное взаимодействие обучающихся;
- обратная связь с обучающимися. Дискуссия обеспечивает видение того, насколько хорошо группа понимает обсуждаемые вопросы, и не требует применения более формальных методов оценки.

Во время лабораторных занятий применяются работа в малых группах и исследовательский метод.

Работа в малых группах — это одна из самых популярных стратегий, так как она дает всем обучающимся (в том числе и стеснительным) возможность участвовать в работе, практиковать навыки сотрудничества, межличностного общения (в частности, умение активно слушать, вырабатывать общее мнение, разрешать возникающие разногласия).

При организации групповой работы, преподаватель должен обратить внимание на следующие ее аспекты:

- нужно убедиться, что учащиеся обладают знаниями и умениями, необходимыми для выполнения группового задания. Нехватка знаний очень скоро даст о себе знать учащиеся не станут прилагать усилий для выполнения задания;
- надо стараться сделать свои инструкции максимально четкими. Маловероятно, что группа сможет воспринять более одной или двух, даже очень четких, инструкций за один раз, поэтому надо записывать инструкции на доске и (или) карточках;
- надо предоставлять группе достаточно времени на выполнение задания.

В основе исследовательского метода лежит проблемное обучение, направленное на развитие активности, ответственности и самостоятельности в принятии решений. Исследовательская форма проведения занятий предполагает:

областью содержанием предметного ознакомление И исследования, формулировка целей и задач исследования, сбор данных об изучаемом объекте, (выделение изучаемых исследования факторов, выдвижение гипотезы, моделирование), объяснение полученных данных, формулировка выводов, оформление результатов работы.

9 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Уровень и качество знаний, обучающихся оценивается по результатам текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины в виде зачета с оценкой во втором семестре и экзамена в третьем семестре.

Текущий контроль включает в себя входной контроль, устный опрос, защиту решения задач для самостоятельной работы, защиту лабораторной работы и тестирования.

Входной контроль предназначен для выявления уровня подготовки обучающихся, необходимых для освоения дисциплины. Вопросы для входного контроля приведены в п. 9.4.

Устный опрос проводится с целью контроля знаний теоретического материала, излагаемого на лекции и усвоенного в результате самостоятельной работы. Перечень тем для самостоятельной проработки теоретического материала приведен в п. 5.5.

Защита решения задач для самостоятельной работы проводится для проверки усвоения студентом текущего учебного материала и способности использовать эти знания для анализа условия и решения задачи, а также умения применять математические методы для описания физических явлений.

Защита лабораторной работы проводится для выявления сформированности навыков эксплуатации приборов и оборудования и проведения физического эксперимента, а также умения проводить статистическую обработку результатов эксперимента. Задания для самостоятельного решения задач и вопросы для защиты лабораторных работ приведены в пунктах 9.6.1. и 9.6.2.

Тестирование проводится с целью выявления степени усвоения теоретического материала данного раздела. Пример теста приведен в п.9.6.3.

Промежуточная аттестация по итогам освоения дисциплины проводится в виде зачета с оценкой во 2-м семестре и экзамена в 3-м семестре.

Экзамен предполагает ответ на теоретические вопросы билета из перечня вопросов представленных в п. 9.6.4. К моменту сдачи экзамена должны быть благополучно пройдены предыдущие формы контроля.

9.1. Балльно-рейтинговая система оценки текущего контроля успеваемости и знаний и промежуточной аттестации студентов

Применение балльно-рейтинговой системы оценки знаний и обеспечения качества учебного процесса данной рабочей программой по дисциплине «Физика» не предусмотрено (п. 1.9 Положения).

9.2 Методические рекомендации по проведению процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Этапы формирования компетенций

Kon(11) donamanyemity	
Код(ы) формируемых на этапе	
компетенций	
ОК-39; ОК-40, ОК-	
41, ОК-42, ПК-11;	
ПК-15; ПК-17; ПК-	
18; ПК-19; ПК-20;	
ПК-25; ПК-30; ПК-36	
23, 1111 30, 1111 30	
ОК-39; ОК-40, ОК-	
41, ОК-42, ПК-11;	
ПК-15; ПК-17; ПК-	
18; ПК-19; ПК-20;	
ПК-25; ПК-30; ПК-36	
ОК-39; ОК-40, ОК-	
41, ОК-42, ПК-11;	
ПК-15; ПК-17; ПК-	
18; ПК-19; ПК-20;	
ПК-25; ПК-30; ПК-36	

9.3 Темы курсовых работ (проектов) по дисциплине

Рефераты, курсовые работы, эссе и т.д. по разделам дисциплины не предусмотрены учебным планом

9.4 Контрольные вопросы для проведения входного контроля остаточных знаний по обеспечивающим дисциплинам

- 1 Что такое коррозия?
- 2 Какие виды коррозионных разрушений металлических изделий вы знаете, какой из них наиболее опасен?
- 3 Одинаков ли химический процесс разрушения металлов при химической и электрохимической коррозии?
 - 4 Может ли оксидная плёнка защитить металл от дальнейшей коррозии?
- 5 Объясните сходство и отличие в механизмах протекания реакции в гальванических элементах и при электрохимической коррозии?
- 6 Какими способами защищают металлы и сплавы от коррозионных разрушений?

7 Назовите Промышленный способ получения металлического алюминия.

9.5 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания	Показатели оценивания	Описание шкалы	
компетенций	компетенций	оценивания	
1. Способность проводить	Знает основные	Оценка «Отлично»:	
доказательства утверждений	физические законы,	- ответ на вопрос полный,	
как составляющей	лежащие в основе	не было необходимости в	
когнитивной и	современной техники и	дополнительных	
коммуникативной функции	технологии. Представляет	(наводящих вопросах);	
(OK-39)	связь физики с другими	- систематизированные,	
	науками и роль	глубокие и полные	
Знать:	физических	знания по всем разделам	
- методы теоретического и	закономерностей.	учебной программы, а	
экспериментального		также по основным	
исследования в физике.	Использует для описания	вопросам, выходящим за	
	явлений известные	ее пределы;	
Уметь:	физические модели.	- умение	
- использовать физические	Применяет знания о	ориентироваться в	
законы при анализе и решении	физических свойствах	теориях, концепциях и	
проблем профессиональной	объектов и явлений в	направлениях по	
деятельности.	практической	изучаемой дисциплине и	
	деятельности.	давать им критическую	
Владеть:		оценку, использовать	
- методами построения	Владеет навыками	научные достижения	
математической модели	описания техногенных	других дисциплин;	
типовых профессиональных	процессов и природных	- творческая	
задач и содержательной	явлений на основе законов	самостоятельная работа	
интерпретации полученных	физики и построения их	на практических,	

результатов. математической молелей. лабораторных занятиях, Владеет навыками активное участие в эксплуатации приборов и групповых обсуждениях, интерпретации результатов высокий уровень измерений. культуры исполнения 2. Владение методами анализа Знает природу основных заданий. физических и синтеза изучаемых явлений явлений, и процессов (ОК-40) причины их возникновения Оценка «Хорошо»: взаимосвязи. - ответ хороший, ответом Знает Знать: достаточно охвачены все законы физики - основные математические математические методы разделы вопроса, единичные наводящие методы решения описывающие эти явления. профессиональных задач; вопросы; - методы теоретического и Использует для описания - систематизированные, глубокие и полные экспериментального явлений известные исследования в физике. физические модели. При знания по всем решении задач применяет поставленным вопросам Уметь: дифференциальное в объеме учебной интегральное исчисление. программы; - применять математические - активная Умеет методы при решении типовых проводить самостоятельная работа профессиональных задач; физический эксперимент. - решать типовые задачи по Может проанализировать на практических, основным разделам курса результаты эксперимента лабораторных занятиях, физики, используя методы систематическое участие математического анализа; Владеет навыками в групповых обсуждениях, высокий - использовать физические решения типовых задач и законы при анализе и решении уровень культуры навыками проведения исполнения заданий. проблем профессиональной физического эксперимента деятельности. Оценка Владеть: «Удовлетворительно»: - методами построения - ответ математической модели типовых профессиональных удовлетворительный, студент достаточно задач и содержательной ориентируется в интерпретации полученных результатов. основных аспектах - методами проведения вопроса, достаточно физических измерений, полные и методами корректной оценки систематизированные знания в объеме учебной погрешностей при проведении физического эксперимента. программы; - самостоятельная работа 3. Способность и готовность на практических, Знает основные лабораторных занятиях, физические законы, осознавать роль естественных участие в групповых лежащие В основе наук развитии науки, обсуждениях, высокий современной техники техники и технологии (ОК-41) уровень культуры технологии. Представляет исполнения заданий. связь физики с другими науками И роль Знать: физических - основные понятия, законы и закономерностей. Оценка «Не модели механики,

электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

Владеть:

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;
- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
- 4. Способность и готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ОК-42)

Знать:

- физические основы механики:
- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики;
- математические модели простейших систем и процессов в естествознании и технике;
- основные математические

Использует для описания явлений известные физические модели. Применяет знания физических свойствах объектов и явлений практической деятельности. Может использовать законы физики решения ДЛЯ технических технологических проблем.

Владеет навыками описания техногенных процессов и природных явлений на основе законов физики и построения их математической моделей. Владеет навыками эксплуатации приборов и интерпретации результатов измерений.

Знает природу основных физических явлений, причины их возникновения и взаимосвязи. Знает законы физики и математические модели описывающие эти явления. Знает математические методы решения задач, возникающих в процессе профессиональной деятельности. Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Умеет делать корректную постановку физической задачи, связанную с изучаемым явлением Природы. Способен провести анализ задачи используя законы физики. Посредством

удовлетворительно»: - нет

удовлетворительного ответа на вопрос, много наводящих вопросов, отсутствие ответов по основным положениям вопроса, незнание лекционного материала; - пассивность на практических и лабораторных занятиях, низкий уровень культуры исполнения заданий.

методы решения профессиональных задач; - методы теоретического и экспериментального исследования в физике.

Уметь:

- употреблять математическую символику для выражения количественных и качественных отношений объектов:
- применять математические методы при решении типовых профессиональных задач; решать типовые задачи по основным разделам курса физики, используя методы математического анализа; использовать физические законы при анализе и решении

Владеть:

деятельности;

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;

проблем профессиональной

- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента;
- 5. Владение культурой профессиональной безопасности, способностью идентифицировать опасности и оценивать риски в сфере своей профессиональной деятельности (ПК-11)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики,

математических вычислений и экспериментальных наблюдений выявляет связи между физическими явлениями и выполняет количественные оценки физических параметров, характеризующих исследуемые явления. Способен выдвинуть научно обоснованную гипотезу о сути физического явления.

Владеет навыками описания основных физических явлений навыками решения типовых физических задач. Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки интерпретации результатов измерений.

Знает природу физических явлений, которые могут быть связаны с различными видами рисков в сфере будущей профессиональной деятельности, причины их возникновения и взаимосвязи.

Умеет посредством теоретического или экспериментального исследования делать оценку физических

атомной и ядерной физики;

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

Владеть:

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;
- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.

6. Способность и готовность эксплуатировать измерительную технику и контрольно-поверочную аппаратуру в соответствии с нормативными правовыми актами, устанавливающими правила эксплуатации и технического обслуживания средств метрологического обеспечения полетов воздушных судов (ПК-15)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального исследования в физике.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

Владеть:

параметров вещества, явления, процесса.

Владеет навыками описания техногенных процессов и природных явлений на основе законов физики и построения их математической модели, теоретических навыками расчетов значений физических величин. навыками эксплуатации приборов и интерпретации результатов измерений.

Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Умеет проводить и планировать физический эксперимент. Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений. Способен пользуясь научной и справочной литературой освоить новые знания.

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;
- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
- 7. Способность эксплуатировать радиотехническое оборудование и средства связи в соответствии с нормативными правовыми актами, устанавливающими правила эксплуатации наземных средств радиотехнического обеспечения полетов и авиационной электросвязи (ПК-17)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального исследования в физике.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

Владеть:

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;
- методами проведения физических измерений,

Знает основные определения, единицы измерения и законы следующих разделов данной дисциплины: электричество и магнетизм, физика колебаний и волн, волновая оптика, атомная физика. Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Умеет решать типовые задачи по разделам: электричество и магнетизм, физика колебаний и волн, волновая оптика, атомная физика. Умеет проводить и планировать физический эксперимент. Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Владеет навыками описания физических явлений и решения типовых задач. Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений. Способен пользуясь научной и

методами корректной оценки погрешностей при проведении физического эксперимента.

справочной литературой освоить новые знания.

8. Способность эксплуатировать светосигнальное электротехническое оборудование, средства централизованного снабжения электроэнергией аэропортов и их объектов в соответствии с нормативными правовыми актами, устанавливающими правила эксплуатации наземных средств электросветотехнического обеспечения полетов воздушных судов (ПК-18)

Знает основные определения, единицы измерения и законы следующих разделов данной дисциплины: электричество и магнетизм, физика колебаний и волн, волновая оптика, атомная физика. Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального

Умеет решать типовые задачи по разделам: электричество и магнетизм, физика колебаний и волн, волновая оптика, атомная физика. Умеет проводить и планировать физический эксперимент. Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

исследования в физике.

Владеет навыками описания физических явлений и решения типовых задач. Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений. Способен пользуясь научной и справочной литературой освоить новые знания.

Владеть:

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;
- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.

9. Способность и готовность 3 эксплуатировать

Знает основные определения, единицы

энергетическое оборудование, электрические и тепловые сети (ПК-19)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики;
- методы теоретического и экспериментального исследования в физике.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

Владеть:

- методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов;
- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.

измерения и законы следующих разделов данной дисциплины: молекулярная физика и термодинамика, электричество и магнетизм, физика колебаний и волн, волновая оптика. Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Умеет решать типовые задачи по разделам: молекулярная физика и термодинамика, электричество и магнетизм, физика колебаний и волн, волновая оптика. Умеет проводить и планировать физический эксперимент. Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Владеет навыками описания физических явлений и решения типовых задач. Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений. Способен пользуясь научной и справочной литературой освоить новые знания.

10. Способность эксплуатировать средства приема, хранения, транспортировки, очистки, контроля качества, выдачи и заправки воздушных судов горюче-смазочными (ПК-20)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности;
- осуществлять в общем виде оценку воздействия авиационно-транспортного производства на окружающую среду с учетом специфики природно-климатических условий.

Владеть:

- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.
- 11. Способность и готовность осуществлять проверку работоспособности эксплуатируемого оборудования (ПК-25)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики; - методы теоретического и экспериментального

Знает основные определения, единицы измерения и законы следующих разделов данной дисциплины: механика, молекулярная физика и термодинамика, электричество и магнетизм. Знает физические приборы и методы измерения физических величин.

Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Владеет навыками описания физических явлений и решения типовых задач. Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений.

Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Умеет проводить и планировать физический эксперимент. Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Владеет навыками

исследования в физике.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности.

Владеть:

- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.

эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений. Способен пользуясь научной и справочной литературой освоить новые знания.

12. Готовность осуществлять приемку и ввод в эксплуатацию объектов аэропорта, технологического оборудования и технических средств обеспечения полетов (ПК-30)

Знать:

- основные понятия, законы и модели механики, электричества и магнетизма, колебаний и волн, квантовой физики, молекулярной физики и термодинамики, оптики, атомной и ядерной физики.

Уметь:

- использовать физические законы при анализе и решении проблем профессиональной деятельности;
- осуществлять в общем виде оценку воздействия авиационно-транспортного производства на окружающую среду с учетом специфики природно-климатических условий.

Владеть:

- методами проведения физических измерений, методами корректной оценки погрешностей при проведении физического эксперимента.

Знает основные определения, единицы измерения и законы следующих разделов данной дисциплины: механика, молекулярная физика и термодинамика, электричество и магнетизм. Знает физические приборы и методы измерения физических величин.

Может проанализировать результаты эксперимента и сделать выводы. Проводит статистическую обработку результатов эксперимента.

Владеет навыками описания физических явлений и решения типовых задач. Владеет навыками эксплуатации приборов и оборудования. Сформированы навыки обработки и интерпретации результатов измерений.

13. Готовность участвовать в разработке и реализации мероприятий по повышению эффективности деятельности воздушного транспорта, безопасности обеспечению полетов воздушных судов, обеспечению авиашионной безопасности предотвращению актов незаконного вмешательства в деятельность авиации, обеспечению охраны окружающей среды, обеспечению качества работ и услуг (ПК-36) Знать: - методы теоретического и

- методы теоретического и экспериментального исследования в физике.
- факторы, определяющие устойчивость биосферы. Уметь:
- использовать физические законы при анализе и решении проблем профессиональной деятельности;
- осуществлять в общем виде оценку воздействия авиационно-транспортного производства на окружающую

Знает природу основных физических явлений, причины их возникновения и взаимосвязи. Знает законы физики и математические модели описывающие эти явления. Знает математические методы решения задач, возникающих в процессе профессиональной деятельности. Знает физические приборы и методы измерения физических величин. Знает основы теории погрешностей.

Умеет делать корректную постановку физической задачи, связанную с изучаемым явлением Природы. Способен провести анализ задачи используя законы физики. Посредством математических вычислений и экспериментальных наблюдений выявляет связи между физическими явлениями и выполняет

среду с учетом специфики	количественные оценки	
природно-климатических	физических параметров,	
условий.	характеризующих	
Владеть:	исследуемые явления.	
- методами построения	Способен выдвинуть	
математической модели	научно обоснованную	
типовых профессиональных	гипотезу о сути	
задач и содержательной	физического явления.	
интерпретации полученных		
результатов.	Владеет навыками	
- методами проведения	описания основных	
физических измерений,	физических явлений и	
методами корректной оценки	навыками решения	
погрешностей при проведении	типовых физических задач.	
физического эксперимента.	Владеет навыками	
	эксплуатации приборов и	
	оборудования.	
	Сформированы навыки	
	обработки и	
	интерпретации результатов	
	измерений. Способен	
	пользуясь научной и	
	справочной литературой	
	освоить новые знания.	

9.6 Типовые контрольные задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины

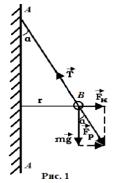
Примеры заданий для проведения текущего контроля самостоятельной работы студента по решению типовых задач

Домашняя работа № 1

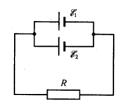
- 1. Первую половину своего пути автомобиль двигался со скоростью $v_1 = 80$ км/ч, а вторую половину пути со скоростью $v_2 = 40$ км/ч. Какова средняя скорость v_{cp} движения автомобиля?
- 2. Самолет летит относительно воздуха со скоростью $v_0 = 800$ км/ч. Ветер дует с запада на восток со скоростью u = 15 м/с. С какой скоростью v самолет будет двигаться относительно земли и под каким углом? к меридиану надо держать курс, чтобы перемещение было: а) на юг; б) на север; в) на запад; г) на восток?
- 3. Камень бросили вертикально вверх на высоту $h_0 = 10$ м. Через какое время t он упадет на землю? На какую высоту h поднимется камень, если начальную скорость камня увеличить вдвое?
- 4. Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением $s = Ct_3$, где C = 0,1 см/с₃. Найти нормальное a_n и

- тангенциальное a_{τ} ускорения точки в момент, когда линейная скорость точки v=0.3 м/с.
- 5. Невесомый блок укреплен в вершине наклонной плоскости, составляющей с горизонтом угол $\alpha=30^\circ$. Гири 1 и 2 одинаковой массы $m_1=m_2=1$ кг соединены нитью и перекинуты через блок. Найти ускорение а, с которым движутся гири, и силу натяжения нити Т. Коэффициент трения гири 2 о наклонную плоскость k=0,1.
- 6. Тело скользит по наклонной плоскости, составляющей с горизонтом угол $\alpha=45^{\circ}$. Зависимость пройденного пути s от времени t дается уравнением s = Ct₂, где C = 1,73 м/c₂. Найти коэффициент трения к тела о плоскость.
- 7. Тело лежит на наклонной плоскости, составляющей с горизонтом угол $\alpha = 60^{\circ}$. При каком предельном коэффициенте трения κ тело начнет скользить по наклонной плоскости? С каким ускорением а будет скользить тело по плоскости, если коэффициент трения $\kappa = 0.03$? Какое время t потребуется для прохождения при этих условиях пути s = 100м? Какую скорость v будет иметь тело в конце пути?
- 8. На автомобиль массой M=1 т во время движения действует сила трения $F_{\text{тр}}$, равная 0,1 действующей на него силе тяжести mg. Какую массу m бензина расходует двигатель автомобиля на то, чтобы на пути s=0,5 км увеличить скорость от $v_1=10$ км/ч до $v_2=40$ км/ч? К.п.д. двигателя $\eta=0,2$, удельная теплота сгорания бензина q=46 МДж/кг.
- 9. Человек, стоящий на неподвижной тележке, бросает в горизонтальном направлении камень массой m=2 кг. Тележка с человеком покатилась назад, и в первый момент бросания ее скорость была v=0,1 м/с. Масса тележки с человеком M=100 кг. Найти кинетическую энергию W_{κ} брошенного камня через время t=0,5 с после начала движения.
- 10. Движущееся тело массой m_1 , ударяется о неподвижное тело массой m_2 . Считая удар неупругим и центральным, найти, какая часть кинетической энергии $W_{\kappa 1}$ первого тела переходит при ударе в тепло. Задачу решить сначала в общем виде, а затем рассмотреть случаи: a) $m_1 = m_2$; б) $m_1 = 9m_2$.
- 11. Деревянным молотком, масса которого $m_1 = 0.5$ кг, ударяют о неподвижную стенку. Скорость молотка в момент удара $v_1 = 1$ м/с. Считая коэффициент восстановления при ударе молотка о стенку k = 0.5, найти количество теплоты Q, выделившееся при ударе. (Коэффициентом восстановления материала тела называют отношение скорости после удара к его скорости до удара.)
- 12.Из орудия массой $m_1 = 5$ т вылетает снаряд массой $m_2 = 100$ кг. Кинетическая энергия снаряда при вылете $W_{\kappa 2} = 7,5$ МДж. Какую кинетическую энергию $W_{\kappa 1}$ получает орудие вследствие отдачи?

- 13. Гирька, привязанная к нити длиной 1=30 см, описывает в горизонтальной плоскости окружность радиусом R=15 см. С какой частотой п вращается гирька?
- 14. Маховик, момент инерции которого J = 63,6 кг \bullet м2 вращается с угловой скоростью $\omega = 31,4$ рад/с. Найти момент сил торможения M, под действием которого маховик
- 15. Мальчик катит обруч по горизонтальной дороге со скоростью v = 7,2 км/ч. На какое расстояние s может вкатиться обруч на горку за счет его кинетической энергии? Уклон горки равен 10 м на каждые 100 м пути.
- 16.Медный шар радиусом R = 10 см вращается с частотой n = 2 об/с вокруг оси, проходящей через его центр. Какую работу А надо совершить, чтобы увеличить угловую скорость ω вращения шара вдвое?


Домашняя работа №2

- 1. Каким должен быть наименьшей объем V баллона, вмещающего массу m = 6,4 кг кислорода, если его стенки при температуре t = 20° C выдерживают давление p = 15,7 МПа?
- 2. Посередине откачанного и запаянного с обеих концов капилляра, расположенного горизонтально, находится столбик ртути длиной l=20 см. Если капилляр поставить вертикально, то столбик ртути переместится на $\Delta l=10$ см. До какого давления p_0 был откачан капилляр? Длина капилляра L=1 м.
- 3. Найти плотность водорода при температуре $t=10^{\circ}$ С и давлении p=97,3 кПа.
- 4. В закрытом сосуде объемом V = 1 мз находится масса $m_1 = 1,6$ кг кислорода и масса $m_2 = 0,9$ кг воды. Найти давление р в сосуде при температуре $t = 500^{\circ}$ С, зная, что при этой температуре вся вода превращается в пар.
- 5. В сосуде находится углекислый газ. При некоторой температуре степень диссоциации молекул углекислого газа на кислород и окись углерода α = 0,25. Во сколько раз давление в сосуде при этих условиях будет больше того давления, которое имело бы место, если бы молекулы углекислого газа не были диссоциированы?
- 6. Какое число молекул n содержит единица объема сосуда при температуре $t = 10^{\circ}$ C и давлении $p = 1,33 \cdot 10$ -9 Па?
- 7. Найти отношение средних квадратичных скоростей молекул гелия и азота при одинаковых температурах.
- 8. Какую массу m углекислого газа можно нагреть при p = const от температуры $t_1 = 20^{\circ}$ C до $t_2 = 100^{\circ}$ C количеством теплоты Q = 222 Дж? На сколько при этом изменится кинетическая энергия одной молекулы?


- 9. Для нагревания некоторой массы газа на $\Delta t_1 = 50^\circ$ С при p = const необходимо затратить количество теплоты $Q_1 = 670$ Дж. Если эту же массу газа охладить на $\Delta t_2 = 100^\circ$ С при V = const, то выделяется количество теплоты $Q_2 = 1005$ Дж. Какое число степеней свободы і имеют молекулы этого газа?
- 10.Найти плотность ρ воздуха: а) у поверхности Земли; б) на высоте h=4 км от поверхности Земли. Температуру воздуха считать постоянной и равной $t=0^{\circ}$ С. Давление воздуха у поверхности Земли $p_0=100$ кПа.
- 11. Найти среднюю длину свободного пробега $\langle \lambda \rangle$ молекул углекислого газа при температуре $t=100^\circ$ С и давлении p=13,3 Па. Диаметр молекул углекислого газа d=0,32 нм.
- 12.Во сколько раз уменьшится число столкновений (ν) в единицу времени молекул двухатомного газа, если объем газа адиабатически увеличить в 2 раза?
- 13. Какой наибольшей скорости v может достичь дождевая капля диаметром D = 0.3 мм? Диаметр молекул воздуха d= 0.3 нм. Температура воздуха t = 0° C. Считать, что для дождевой капли справедлив закон Стокса.
- 14. Масса m=10,5 г азота изотермически расширяется от объема $V_1=2\pi$ до объема $V_2=5\pi$. Найти изменение ΔS энтропии при этом процессе.
- 15.Найти изменение ΔS энтропии при переходе массы m=8г кислорода от объема V_1 =10л при температуре t_1 =80°C к объему V_2 =40л при температуре t_2 =300°C.
- 16.В сосуде объемом V = 10 л находится масса m = 0,25 кг азота при температуре t = 27° С. Какую часть давления газа составляет давление, обусловленное силами взаимодействия молекул? Какую часть объема сосуда составляет собственный объем молекул?

Домашняя работа №3

- 1. Какой минимальный заряд q нужно закрепить в нижней точке сферической полости радиуса R, чтобы в поле тяжести небольшой шарик массы m и заряда Q находился в верхней точке полости в положении устойчивого равновесия?
- 2. На рис. 1 AA заряженная бесконечная плоскость и B одноименно заряженный шарик с массой m=0,4 мг и зарядом q=667 пКл. Сила натяжения нити, на которой висит шарик, T=0,49 мН. Найти поверхностную плотность заряда σ на плоскости AA.

- 3. Найти напряженность поля и потенциал во всем пространстве тонкой сферы радиуса R, равномерно заряженной до заряда q.
- 4. Шар радиусом R равномерно заряжен с объемной плотностью заряда р. Вычислите распределение потенциала внутри и вне шара. За нулевой уровень отсчета потенциала принять бесконечность.
- 5. Бесконечная плоскость заряжена с поверхностной плотностью σ. Найти напряженность и потенциал электрического поля на расстоянии r от плоскости.
- 6. Бесконечно длинный тонкий проводник равномерно заряжен с линейной плотностью 10-9 Кл/см. Найти напряжённость и потенциал электрического поля на расстоянии r=10 см от провода.
- 7. Бесконечная цилиндрическая поверхность с радиусом R заряжена с поверхностной плотностью σ . Найти напряженность и потенциал электрического поля в точках r < R и r > R.
- 8. Найти электроемкость плоского конденсатора.
- 9. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобретает скорость v=106 м/с. Расстояние между пластинами d=5,3 мм. Найти разность потенциалов U между пластинами, напряженность E электрического поля внутри конденсатора и поверхностную плотность заряда σ на пластинах.
- 10. Два параллельно соединенных элемента с одинаковыми ЭДС $\mathcal{E}_1 = \mathcal{E}_2 = 2$ В и внутренними сопротивлениями r1 = 1 Ом и r2 = 1,5 Ом, замкнуты на внешнее сопротивление R = 1,4 Ом. Найти ток в каждом из элементов и во всей цепи.

- 11. Найти индукцию магнитного поля на расстоянии b от бесконечного прямолинейного проводника с током I.
- 12.Из проволоки длиной $\ell = 1$ м сделана квадратная рамка. По рамке течет ток I = 10 А. Найти напряженность H магнитного поля в центре рамки.
- 13. Найти напряженность магнитного поля внутри тороида с током І. Число витков в тороидеN.
- 14.В однородном магнитном поле с индукцией B = 0.5 Тл движется равномерно проводник длиной $\ell = 10$ см. По проводнику течет ток I = 2 А. Скорость движения проводника v = 20 см/с и направлена перпендикулярно к направлению магнитного поля. Найти работу A перемещения проводника за время t = 10 с и мощность P, затраченную на это перемещение. Найти индуцированную в проводнике ЭДС.
- 15. Найти индуктивность тонкого соленоида. Известны: n число витков на единицу длины соленоида, V объем соленоида.
- 16. Найти плотность энергии магнитного поля внутри соленоида. Считать соленоид тонким и бесконечно длинным, а поле внутри однородным.

Примерный перечень вопросов для защиты лабораторных работ

Семестр 2

ЛР №1 Теория погрешностей, Простейшие измерения

- 1. Что называется измерением физической величины?
- 2. Какое измерение называется прямым?
- 3. Что называется действительным значением физической величины?
- 4. Что называется абсолютной, относительной погрешностью измерения? Почему возникают погрешности измерений?
- 5. Что такое абсолютная погрешность?
- 6. Что такое относительная погрешность?
- 7. Что такое доверительный интервал?
- 8. Как производят округление числового значения среднего арифметического?
- 9. Сколько значащих цифр оставляется в окончательной записи погрешности результата измерения?
- 10. Какое измерение называется косвенным?
- 11. Как определяется погрешность результатов косвенных измерений?

ЛР №2 Определение отношения теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме по методу Клемана-Дезорма

- 1. Что называется теплоемкостью вещества? Удельной теплоемкостью? Молярной теплоемкостью?
- 2. Что называется идеальным газом?
- 3. Получите выражение для внутренней энергии произвольной массы идеального газа и объясните из чего складывается внутренняя энергия идеального газа.
- 4. Чем определяется число степеней свободы системы?
- 5. Запишите и сформулируйте 1-е начало термодинамики.
- 6. Выведите выражение для молярных теплоемкостей идеального газа через число степеней свободы.
- 7. Запишите уравнение газового состояния для изохорного, изобарного, изотермического и адиабатического процессов и 1-е начало термодинамики для этих процессов.

ЛР №3 Определение горизонтальной составляющей напряженности магнитного поля Земли

- 1. Каким образом можно измерить вертикальную составляющую магнитного поля Земли с помощью тангенс-гальванометра? Нужно ли изменить его конструкцию и как это сделать?
- 2. Что характеризуют вектора магнитной индукции и напряженности
- 3. магнитного поля и какова зависимость между ними?

- 4. Применить правило буравчика для определения направления магнитных полей прямого и кругового тока.
- 5. Сформулировать и записать закон Био-Савара-Лапласа.
- 6. Вывести напряженность магнитного поля прямого тока конечных размеров.
- 7. Вывести напряженность магнитного поля на оси и в центре кругового тока.

Семестр 3

ЛР №1 Определение коэффициента затухания и добротности колебательной системы физического маятника

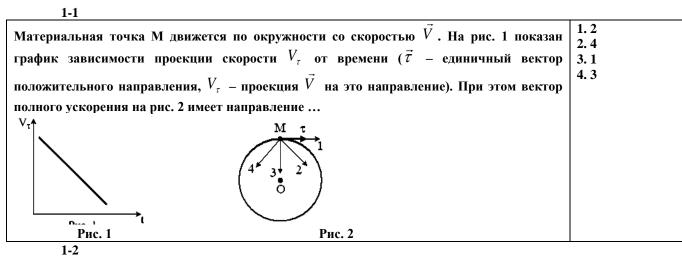
- 1. Какие колебания называются затухающими? Каким уравнением описываются затухающие колебания? Как получить решение этого уравнения?
- 2. Какую величину называют периодом затухающих колебаний?
- 3. Что такое логарифмический декремент затухания? Что такое добротность колебательной системы? Какую величину называют коэффициентом сопротивления среды?
- 4. Как коэффициент затухания связан с вязкостью среды, в которой происходят колебания?
- 5. Как из эксперимента определить коэффициент затухания?
- 6. Как из эксперимента определить логарифмический декремент затухания?
- 7. Как из эксперимента определить добротность колебательной системы?

ЛР №2 Определение фокусного расстояния линзы

- 1. Дайте определение оптической оси, фокальной плоскости и главных фокусов линзы.
- 2. При каких условиях система из собирающей и рассеивающей линз будет давать действительное изображение?
- 3. Для каких лучей применима формула линзы?
- 4. В чем заключается явление хроматической аберрации, сферической аберрации?
- 5. Для какой цели применяются при фотографировании светофильтры?
- 6. Опишите методику измерения фокусного расстояния для рассеивающей линзы.
- 7. Покажите, что если расстояние между объектом и экраном превышает 4F, то изображение на экране может быть получено при двух различных положениях линзы.

ЛР №3 Исследование свойств поляризованного света

1. Какие световые лучи называют: а) естественными; б) поляризованными; в) частично поляризованными? г) плоско-поляризованными; д) эллиптически поляризованными; в) поляризованными по кругу?


- 2. Какую величину называют степенью поляризации светового луча? Чему равна степень поляризации: а) естественного луча; б) плоскополяризованного луча?
- 3. Какой прибор называется поляризатором, анализатором?
- 4. Изобразите расположение лучей в случае получения плоско-поляризованного света при отражении от диэлектрика. Какой из лучей в этой схеме: а) естественный; б) частично поляризованный; в) плоско-поляризованный?
- 5. Сформулируйте закон Брюстера. При каком соотношении углов падения и преломления светового луча наблюдается полная поляризация света при отражении от диэлектрика?
- 6. В чем заключается явление двойного лучепреломления и как оно объясняется? Какое направление в кристалле называется оптической осью?
- 7. Сформулируйте закон Малюса.

ЛР №4 Исследование дисперсии оптического стекла

- 1. Из каких основных частей состоит гониометр, их назначение?
- 2. Что такое дисперсия света?
- 3. Чем отличается нормальная дисперсия от аномальной?
- 4. По каким признакам можно отличить спектры, полученные с помощью призмы и дифракционной решётки?
- 5. В чём заключаются основные положения и выводы электронной теории дисперсии света?
- 6. Почему металлы сильно поглощают свет?

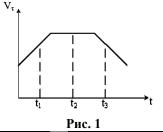
Пример теста для проверки усвоения студентом лекционного материала

Тесты по разделу №1 «Механика»:

Материальная точка движется с постоянной по величине скоростью вдоль	1:	В	т.	3
плоской кривой. Ее полное ускорение максимально	траектории			
	2:	В	T.	1

1.3

Если \vec{a}_{τ} и \vec{a}_{n} - тангенциальная и нормальная составляющие ускорения, то соотношения: $a_{\tau}=0$, $a_{n}=0$ справедливы для ...


- 1. равномерного движения по окружности 2. прямолинейного равноускоренного движения
- 3. равномерного криволинейного движения
- 4. прямолинейного равномерного движения

1-4

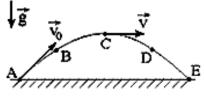
Материальная точка М движется по окружности со скоростью \vec{V} . На рис. 1 показан график зависимости проекции скорости V_{τ} от времени ($\vec{\tau}$ - единичный вектор положительного направления, V_{τ} - проекция \vec{V} на это направление). На рис.2 укажите направление ускорения т. М в момент времени t2.

1: 3 2: 1

3: 2 4: 4

 $\begin{array}{c}
M \quad \tau \\
4 \quad 3 \quad 2 \\
0
\end{array}$

Рис. 2


1-5

Камень бросили под углом к горизонту со скоростью Vo. Его траектория в однородном поле тяжести изображена на рисунке. Сопротивления воздуха нет.

1. $a_{\tau} > 0$

2. $a_{\tau} < 0$

3. $a_{\tau} = 0$

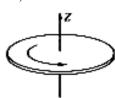
Тангенциальное ускорение \vec{a}_{τ} на участке A-B-C ...

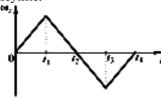
3. $u_{\tau} = 0$

1-6

Два тела брошены под одним и тем же углом к горизонту с начальными скоростями Vo и 2Vo. Если сопротивлением воздуха пренебречь, то соотношение дальностей полёта S2/S1 равно ...

1. 4 2. √2

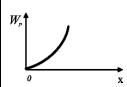

2. √2 3. 2


4. $2\sqrt{2}$

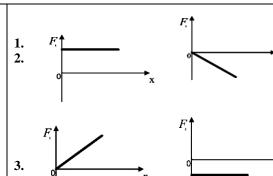
1-7

Диск вращается вокруг своей оси, изменяя проекцию своей угловой скорости \mathcal{O}_Z так, как показано на рисунке.

1. от t1 до t2 и от t3 до t4
2. от t1 до t2 и от t2 до t3
3. от t2 до t3 и от t3 до t4



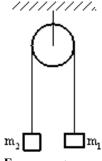
4. от 0 до *t*1 и от *t*1 до *t*2


Вектор угловой скорости направлен по оси Z в интервалы времени

1 0

В потенциальном поле сила \vec{F} пропорциональна градиенту потенциальной энергии $W_{\rm p}$. Если график зависимости потенциальной энергии $W_{\rm p}$ от координаты x имеет вид

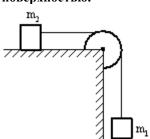
то зависимость проекции силы F_x на ось OX будет ...



|

1-9

Два тела массами m1 и m2 соединены нерастяжимой нитью, перекинутой через невесомый блок.


- 1: $m_1 a = T m_1 g$
- 2: $m_1 a = m_1 g + T$
- 3: $m_1 a = m_1 g T$

Если m₁ < m₂, а T – сила натяжения нити, то уравнение второго закона Ньютона для тела массой m₁ в проекции на направление движения имеет вид...

1-10

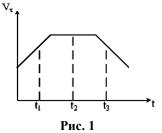
Два тела массами m1 и m2 соединены нерастяжимой нитью, перекинутой через невесомый блок, укрепленный на краю стола с гладкой поверхностью.

Если $m_1 > m_2$, а T — сила натяжения нити, то уравнение второго закона Ньютона для тела массой m_1 в проекции на направление движения имеет вид...

1: $m_1 a = m_1 g - T$

2: $m_1 a = m_1 g + T$

3: $m_1 a = (m_1 + m_2)g - T$


1-11

Материальная точка М движется по окружности со скоростью \vec{V} . На рис. 1 показан график зависимости проекции скорости V_{τ} от времени ($\vec{\tau}$ - единичный вектор положительного направления, V_{τ} - проекция \vec{V} на это направление). На рис.2 укажите

1: 4 2: 2

3: 1 4: 3

положительного направления, V_{τ} - проекция V на это направление). На ринаправление силы, действующей на т. М в момент времени t1.

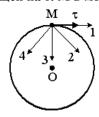


Рис. 2

1-12

Сила трения колёс поезда меняется по закону $F(S) = \frac{1}{5} S$. Работа сил трения на пути 1 км равна ...

- 1. 1 МДж
- 2. 10 кДж
- 3. 200 Дж
- 4. 100 кДж
- 5. 200 кДж

1-13

Теннисный мяч летел с импульсом \vec{p}_1 в горизонтальном направлении, когда теннисист произвел по мячу резкий удар с средней силой 50 Н. Изменившийся импульс мяча стал равным \vec{p}_2 (масштаб указан на рисунке).

- 1. 0,1 c 2. 0,01 c
- 3. 0,05 c
- 4. 0,5 c

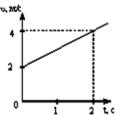
Сила действовала на мяч в течении ...

1-14

Лифт движется вниз с ускорением а >g, при этом ...

- 1. с телом ничего не произойдет
- будет тело находиться невесомости
- 3. тело прижмется к полу лифта
- 4. тело прижмется к потолку лифта

1-15


Летевший горизонтально со скоростью у пластилиновый шарик массой т ударился о массивную вертикальную стенку и прилип к ней. При этом стена получила импульс ...

- **1.** $m\overline{v}$

- **4.** 2mv

1-16

На рисунке приведён график зависимости скорости тела v от времени t.

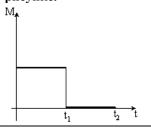
Масса тела 10 кг. Сила, действующая на тело, равна ...

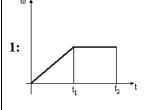
1.10 H

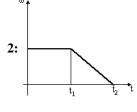
2.15 H

3.5 H

4. 20 H


1-17


Координаты частицы массы т при ее движении в плоскости XY изменяются по законам: x=A sin ωt , y=B $cos\omega t$, где A, B, ω – постоянные. Модуль силы, действующей на частицу равен ...


- 1. $F = m\omega^2\sqrt{(A\sin\omega t)^2 + (B\cos\omega t)^2}$
- 2. $F = m\omega^2 \sqrt{(A\cos\omega t)^2 + (B\sin\omega t)^2}$ 3. $F = m\omega^2 (A+B)$
- 4. $F = m\omega^2 \sqrt{(A\sin\omega t)^2 (B\cos\omega t)^2}$

1-18

Диск начинает вращаться под действием момента сил, график временной зависимости которого представлен на рисунке.

1: 150 м

2: 110 м

3: 55 м

4: 90 м

1-22

Физические явления в одинаковых условиях протекают одинаково во всех инерциальных системах отсчета – это принцип ...

1: относительности

2: дополнительности

3: соответствия

4: независимости

Контрольные вопросы промежуточной аттестации по итогам освоения дисциплины

Перечень вопросов к зачету

Механика

- 1. Основные понятия кинематики поступательного движения: скорость, ускорение, траектория, путь, центр масс. Системы координат.
- 2. Вращательное движение. Центростремительное (нормальное) ускорение, угловая скорость, угловое ускорение, радиус кривизны.

- 3. Динамика. Материальная точка. Сила. Масса. Импульс. Инерциальные системы отсчёта. Законы Ньютона.
 - 4. ІІ-ой закон Ньютона. Закон сохранения импульса.
- 5. Реактивное движение. Уравнение движения тела с переменной массой.
- 6. Близко- и дальнодействующие силы. Силы трения. Силы упругости. Закон всемирного тяготения.
 - 7. Космические скорости.
- 8. Работа. Кинетическая и потенциальная энергии. Закон сохранения механической энергии.
 - 9. Центральный удар.
- 10. Основной закон динамика вращательного движения. Момент силы. Момент импульса. Момент инерции. Теорема Гюйгенса-Штейнера.
 - 11. Кинетическая энергия вращающегося тела.
 - 12. Закон сохранения момента импульса. Гироскоп.
- 13. Гармонические колебания и их параметры. Уравнения колебаний пружинного, математического и физического маятников.
- 14. Собственные и вынужденные колебания. Затухающие колебания. Резонанс.
- 15. Принцип относительности Галилея. Постулаты специальной теории относительности.
- 16. Преобразования Лоренца. Относительность расстояний и промежутков времени.
 - 17. Связь массы и энергии.

Термодинамика

- 18. Изопроцессы. Законы идеальных газов
- 19. Молекулярно-кинетическая теория (основные положения). Закон Авогадро. Уравнение Клапейрона-Клаузиуса.
- 20. Распределение Максвелла молекул по скоростям. Средняя скорость. Средняя квадратичная скорость.
 - 21. Барометрическая формула. Распределение Больцмана.
- 22. Диффузия. Внутреннее трение. Теплопроводность. Уравнения для описания этих процессов.
 - 23. Теплоёмкость и её виды. Формула Майера.
 - 24. Первое начало термодинамики.
- 25. Адиабатический процесс. Формула Пуассона. Работа в изо- и адиабатических процессах.
- 26. Молекулярно-кинетическая теория теплоёмкости. Степени свободы.
 - 27. Круговые процессы. Цикл Карно.
 - 28. Статистический смысл энтропии. Формула Клаузиуса.
 - 29. Второе начало термодинамики.
 - 30. Реальные газы. Изотермы Эндрюса. Уравнение Ван-дер-Ваальса.
 - 31. Эффект Джоуля-Томсона. Сжижение газов.

- 32. Жидкости. Поверхностное натяжение. Формула Лапласа.
- 33. Строение твёрдых тел. Энергия молекул газа, жидкости и твёрдого тела.

Электродинамика

- 34. Закон Кулона.
- 35. Напряженность электрического поля.
- 36. Электрическое поле. Напряженность поля.
- 37. Принцип суперпозиции электрических полей.
- 38.Поток напряженности. Теорема Остроградского—Гаусса для электростатического поля в вакууме.
- 39. Работа, совершаемая силами электростатического поля при перемещении в нем электрического заряда.
- 40. Потенциал электростатического поля.
- 41. Примеры применения теоремы Остроградского—Гаусса к расчету электростатических полей в вакууме.
- 42. Дипольные моменты молекул диэлектрика.
- 43. Поляризация диэлектриков.
- 44. Теорема Остроградского—Гаусса . для электростатического поля в среде.
- 45. Условия для электростатического поля на границе раздела изотропных диэлектрических сред.
- 46. Проводники в электростатическом поле.
- 47. Электроемкость уединенного проводника.
- 48. Взаимная емкость. Конденсаторы.
- 49. Энергия заряженного проводника и электрического поля.
- 50.Понятие об электрическом токе.
- 51.Сила и плотность тока.
- 52.Основы классической электронной теории электропроводности металлов.
- 53. Сторонние силы.
- 54. Законы Ома и Джоуля—Ленца.
- 55.Правила Кирхгофа.
- 56. Законы электролиза Фарадея, Электролитическая диссоциация.
- 57. Атомность электрических зарядов.
- 58. Электролитическая проводимость жидкостей.
- 59. Электропроводность газов.
- 60. Понятие о различных типах газового разряда.
- 61. Некоторые сведения о плазме.
- 62. Магнитная индукция. Сила Лоренца.
- 63. Закон Ампера.
- 64.Закон Био—Савара—Лапласа.
- 65. Некоторые простейшие примеры магнитных полей в вакууме.
- 66. Магнитное взаимодействие проводников с токами. Контур с током в магнитном поле.

- 67. Закон полного тока для магнитного поля в вакууме.
- 68. Магнитный поток. Теорема Остроградского—Гаусса для магнитного поля.
- 69. Работа перемещения проводника с током в постоянном магнитном поле.
- 70. Движение заряженных частиц в постоянном магнитном поле.
- 71. Явление Холла.
- 72. Удельный заряд частиц. Масс-спектрометрия.
- 73. Ускорители заряженных частиц.
- 74. Магнитные моменты электронов и атомов.
- 75. Атом в магнитном поле.
- 76. Диамагнетики и парамагнетики в магнитном поле.
- 77. Магнитное поле в веществе.
- 78. Ферромагнетики.
- 79. Условия для магнитного поля на границе раздела изотропных сред. Магнитные цепи.
- 80.Основной закон электромагнитной индукции.
- 81. Явление самоиндукции.
- 82.Взаимная индукция.
- 83. Энергия магнитного поля в неферромагнитной изотропной среде.
- 84. Закон сохранения энергии для магнитного поля в неферромагнитной среде.
- 85. Общая характеристика теории Максвелла.
- 86. Первое уравнение Максвелла.
- 87. Ток смещения. Второе уравнение Максвелла.
- 88. Третье и четвертое уравнения Максвелла.
- 89.Полная система уравнений Максвелла для электромагнитного поля.

Перечень вопросов для проведения промежуточной аттестации в виде экзамена

Колебания и волны

- 1. Гармонические колебания.
- 2. Механические гармонические колебания.
- 3. Свободные гармонические колебания в электрическом колебательном контуре.
- 4. Сложение гармонических колебаний.
- 5. Затухающие колебания.
- 6. Вынужденные механические колебания.
- 7. Вынужденные электрические колебания.
- 8. Продольные и поперечные волны в упругой среде.
- 9. Уравнение бегущей волны.
- 10. Фазовая скорость и энергия упругих волн.
- 11. Принцип суперпозиции волн. Групповая скорость.
- 12.Интерференция волн. Стоячие волны.
- 13. Эффект Доплера в акустике.

- 14. Свойства электромагнитных волн.
- 15. Энергия электромагнитных волн.
- 16.Излучение электромагнитных волн.
- 17. Шкала электромагнитных волн.
- 18. Отражение и преломление электромагнитных волн на границе раздела двух диэлектрических сред.
- 19. Эффект Доплера для электромагнитных волн.

Оптика

- 20.Закон прямолинейного распространения света. Закон независимости световых лучей. Закон отражения света. Закон преломления света. Закон обратимости световых лучей. Показатель преломления. Полное внутреннее отражение.
- 21. Теория истечения, волновая теория. Зависимость между показателем преломления и скоростью света в веществе.
- 22. Принцип Ферма. Оптическая длина пути.
- 23. Скорость света. Астрономические наблюдения Рёмера. Определение скорости света по аберрации света Бредли. Опыт Физо. Опыт Фуко и Физо. Опыт Майкельсона.
- 24. Световой поток. Функция видности.
- 25. Фотометрические величины и их единицы.
- 26. Основные понятия и определения (гомоцентрический пучок,; астигматическая разность; точечное или стигматическое изображение; действительное и мнимое изображения; сопряженные точки; пространство предметов и пространство изображений).
- 27. Центрированная оптическая система. Фокусы. Фокальные плоскости. Линейное увеличение. Главные точки и главные плоскости. Оптическая сила. Формула Ньютона.
- 28. Продольное увеличение. Угловое увеличение. Связь между линейным, продольным и угловым увеличениями.
- 29.Сложение оптических систем. Оптическая система суммарной системы. Формула кардинальных плоскостей суммарной системы.
- 30.Преломление на сферической поверхности. Параксиальные лучи. Теорема Лагранжа-Гельмгольца.
- 31. Линза. Тонкая линза.
- 32. Погрешности оптических систем. Оптические приборы.
- 33. Световая волна. Интенсивность света. Связь между интенсивностью света и амплитудой световой волны.
- 34.Интерференция световых волн. Продолжительность цуга волн. Оптическая разность хода. Зеркала Френеля. Бипризма Френеля.
- 35.Интерференция многих волн. Векторная диаграмма. Условия для главных максимумов и интерференционных минимумов.
- 36. Принцип Гюйгенса Френеля.
- 37. Зоны Френеля. Обоснование с точки зрения волновой оптики закона прямолинейного распространения света.

- 38. Дифракция Френеля от простейших преград.
- 39. Дифракция Фраунгофера от щели и на круглом отверстии.
- 40. Дифракционная решетка.
- 41. Дифракция на пространственной решетке.
- 42.Голография.
- 43. Дисперсия света. Нормальная и аномальная дисперсии.
- 44. Групповая скорость.
- 45. Классическая электронная теория дисперсии света.
- 46.Поглощение света. Закон Бугера-Ламберта. Закон Бера.
- 47. Рассеяние света. Рассеяние в мутных средах. Рэлеевское рассеяние.
- 48.Поляризация света при отражении и преломлении на границе раздела двух диэлектрических сред.
- 49. Двойное лучепреломление.
- 50.Интерференция поляризованного света.
- 51. Искусственная оптическая анизотропия.
- 52. Вращение плоскости поляризации. Закон Био.
- 53. Тепловое излучение. Закон Кирхгофа.
- 54. Законы Стефана Больцмана и Вина.
- 55. Формула Планка.

Квантовая физика

- 56. Фотоэффект, его виды. Формула Эйнштейна для фотоэффекта.
- 57. Фотоны их энергия и импульс. Эффект Комптона.
- 58.Опыт Лебедева. Давление света.
- 59. Длина волны де Бройля.
- 60. Принцип неопределённости Гейзенберга.
- 61. Волновая функция и её физический смысл. Уравнение Шредингера.
- 62. Туннельный эффект. Электрон в потенциальной яме.
- 63. Модель атома Томсона. Опыт Резерфорда. Планетарная модель атома.
- 64.Постулаты Бора. Вывод сериальной формулы. Формула Бальмера для спектра водорода.
- 65. Спонтанное и вынужденное излучение. Принцип работы лазеров.
- 66.Виды лазеров. Принцип работы гелий-неонового, рубинового и полупроводникового лазеров.

Ядерная физика.

- 67. Естественная радиоактивность и её закономерности. Правила смещения. Уравнения альфа- и бета-распада. Период полураспада.
- 68. Реакции деления и синтеза. Дефект массы и энергия связи. Критическая масса.
- 69. Элементарные частицы.
- 70. Ионизирующие излучения и их характеристики. Космические лучи, их состав и характеристики.

10 Методические рекомендации для обучающихся по освоению дисциплины

Изучение дисциплины «Физика» организуется в виде лекций, практических занятий, лабораторных работ и самостоятельной работы. Продолжительность изучения дисциплины — два семестра. Уровень и качество знаний, обучающихся оцениваются по результатам входного контроля, текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины в виде зачёта с оценкой и экзамена.

Лекция — основная форма систематического, последовательного устного изложения учебного материала. Чтение лекций, как правило, осуществляется наиболее профессионально подготовленными преподавателями университета. Основными задачами лекций являются:

- ознакомление обучающихся с целями, задачами и структурой изучаемой дисциплины, ее местом в системе наук и связями с другими дисциплинами;
- изложение комплекса основных научных понятий, законов, методов, принципов данной дисциплины;

Лекции мотивируют обучающегося на самостоятельный поиск и изучение научной и специальной литературы и других источников по темам дисциплины, ориентируют на выявление, формулирование и исследование наиболее актуальных вопросов и проблем физики. Значимым фактором полноценной и плодотворной работы обучающегося на лекции является культура ведения конспекта. Слушая лекцию, необходимо научиться выделять и фиксировать ее ключевые моменты, записывая их более четко и выделяя каким-либо способом из общего текста. Кроме того, необходимо научиться делать понятные для обучающегося сокращения при записи текста лекции и стремиться освоить быструю манеру письма и рубрикацию материала.

Практические занятия по дисциплине «Физика» проводятся в соответствии с учебно-тематическим планом по отдельным группам. Цель практических занятий — закрепить теоретические знания, полученные студентами на лекциях и в результате самостоятельного изучения соответствующих разделов рекомендуемой литературы, а также приобрести начальные практические навыки анализа наблюдаемых физических явлений.

Темы практических занятий заранее сообщаются обучающимся для того, чтобы они имели возможность подготовиться и проработать соответствующие теоретические вопросы дисциплины. В начале каждого практического занятия преподаватель кратко доводит до обучающихся цель и задачи занятия и сообщает обучающимся основные законы необходимые для решения задач на занятии.

В рамках практического занятия обучающиеся решают задачи и разбирают практические задачи самостоятельно или при помощи преподавателя. Преподаватель выступает в роли консультанта, осуществляет контроль полученных обучающимися результатов.

В рамках практического занятия могут быть проведены: слушание и обсуждение докладов, устный опрос, тестирование.

Отсутствие обучающихся на занятиях или их неактивное участие на них может быть компенсировано самостоятельным выполнением дополнительных заданий и представлением их на проверку преподавателю.

Лабораторные работы призваны развить навыки экспериментальной физической деятельности обучающихся, а также закрепить физические знания процессе лабораторных работ опытным студенты самостоятельное ознакомление с теорией, лежащей в основе изучаемого явления используя методические пособия. На занятиях лабораторные работы проводятся в присутствии преподавателя, контролирующего процесс их проведения и консультирующего студентов. По результатам проведения работ студентами оформляется отчёт и проводится его защита. В процессе защиты отчёта по лабораторной работе преподаватель проверяет знание основных законов, на базируется которых изучавшееся явление, a также правильность самостоятельность написание отчёта.

Целью *самостоятельной работы* обучающихся при изучении настоящей учебной дисциплины является выработка ими навыков работы с научной и учебной литературой, а также развитие у обучающихся устойчивых способностей к самостоятельному изучению и обработке полученной информации.

В процессе самостоятельной работы обучающийся должен воспринимать, осмысливать и углублять получаемую информацию, решать практические задачи, подготавливать доклады, выполнять домашние задания, овладевать профессионально необходимыми навыками. Самостоятельная работа обучающегося весьма многообразна и содержательна. Она включает следующие виды занятий:

- самостоятельный подбор, изучение, конспектирование, анализ учебнометодической и научной литературы, периодических научных изданий,
- —индивидуальная творческая работа по осмыслению собранной информации, проведению сравнительного анализа и синтеза материалов, полученных из разных источников, интерпретации информации, выполнение домашних заданий;
- завершающий этап самостоятельной работы подготовка к сдаче экзамена по дисциплине, предполагающая интеграцию и систематизацию всех полученных при изучении учебной дисциплины знаний.

По Положению о самостоятельной работе студентов Университета содержание внеаудиторной самостоятельной работы для изучения дисциплины «Физика» может быть рекомендовано в соответствии со следующими ее видами, разделенными по целевому признаку:

- а) для овладения знаниями:
- чтение текста (учебника, первоисточника, дополнительной литературы);
- составление плана текста;
- конспектирование текста;
- работа со словарями и справочниками;
- работа с электронными информационными ресурсами и информационной телекоммуникационной сети Интернет и др.;
- б) для закрепления и систематизации знаний:
- работа с конспектом лекции (обработка текста);

- -работа над учебным материалом (учебника, первоисточника, дополнительной литературы);
- составление плана и тезисов ответа;
- составление альбомов, таблиц, схем для систематизации учебного материала;
- ответы на контрольные вопросы; подготовка тезисов сообщений к выступлению на практическом занятии;
- подготовка к сдаче зачета и др.;
- в) для формирования умений и навыков:
- решение физических задач;
- -проектирование и моделирование разных видов и компонентов профессиональной деятельности.

В процессе изучения дисциплины «Физика» важно постоянно пополнять и расширять свои знания. Изучение рекомендованной литературы и других источников информации является важной составной частью восприятия и усвоения новых знаний. Кроме того, необходимо отметить, что, в определенном смысле, качественный уровень всей самостоятельной работы обучающегося определяется уровнем самоконтроля.

Текущий контроль знаний студентов осуществляется в следующих формах:

- по итогам работы на практических занятиях,
- итоги тестирования,
- выполнение лабораторных работ.

Рабочая программа дисциплины разработана в соответствии с требованиями $\Phi \Gamma OC$ ВПО по направлению подготовки 162700 «Эксплуатация аэропортов и обеспечение полетов воздушных судов».

Программа рассмотрена и утверждена на заседании кафедры № 5 «Физики и химии» « 15 »
Разработчики:
к.т.н. Ежов О.Н.
(ученая степень, ученое звание, фамилия и инициалы разработчиков) Заведующий кафедрой № 5 «Физики и химии»
д.фм.н., профессор (ученая степень, ученое звание, фамилия и инициалы заведующего кафедрой) Арбузов В.И.
Программа согласована:
Руководитель ОПОП
(ученая степень, ученое звание, фамилия и инициалы руководителя ОПОП) Программа рассмотрена и одобрена на заседании Учебно-методического
совета Университета « <u>11</u> » <u>чибаря</u> 2015 года, протокол № <u>4</u> .
С изменениями и дополнениями от « <u>30</u> » <u>авсуета</u> 2017 года, протокол № <u>40</u> (в соответствии с Приказом Минобрнауки России от 05.04.2017 № 301
«Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам специалитета, программам магистратуры»)