

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА

(РОСАВИАЦИЯ) ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ИМЕНИ ГЛАВНОГО МАРШАЛА АВИАЦИИ А.А. НОВИКОВА»

УТВЕРЖДАЮ

Ю.Ю. Михальчевский

«<u>23</u> » јего гра 2023 года

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Информационная безопасность

Направление подготовки 01.03.04 Прикладная математика

Направленность программы (профиль) Математическое и программное обеспечение беспилотных авиационных систем

> Квалификация выпускника бакалавр

> > Форма обучения очная

Санкт-Петербург 2023

1 Цели освоения дисциплины

Целями освоения дисциплины «Информационная безопасность» являются:

Целью освоения дисциплины «Информационная безопасность» является формирование у студентов системы специальных знаний и прикладных навыков о содержании и особенностях проведения мероприятий, связанных с информационной безопасностью и защитой информации при эксплуатации беспилотных авиационных систем.

Задачами освоения дисциплины «Информационная безопасность» являются:

- формирование у обучающихся знаний об основных результатах в области криптографических исследований;
- приобретение обучающимися умений анализировать методы защиты линий передачи данных при решении задач защиты БАС;
- овладение обучающимися навыками моделирования процессов при решении задач защиты БАС.

Дисциплина обеспечивает подготовку выпускника к решению задач профессиональной деятельности научно-исследовательского типа.

2 Место дисциплины в структуре ОПОП ВО

Дисциплина «Информационная безопасность» представляет собой дисциплину, относящуюся к Обязательной части Блока 1. Дисциплины (модули). Обязательная часть.

Дисциплина «Информационная безопасность» базируется на результатах обучения, полученных при изучении дисциплин: «Программные и аппаратные средства беспилотных авиационных систем», «Системное программное обеспечение беспилотных авиационных систем», «Правовое обеспечение деятельности системы воздушного транспорта», «Физика», «Микропроцессорные устройства беспилотных авиационных систем».

Дисциплина «Информационная безопасность» является обеспечивающей для Выполнения и защиты выпускной квалификационной работы.

Дисциплина «Информационная безопасность» изучается в 4 семестре.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс освоения дисциплины «Информационная безопасность» направлен на формирование следующих компетенций:

Код компетенции/	Результат обучения: наименование компетенции,
индикатора	индикатора компетенции
УК-1	Способен осуществлять поиск, критический

Код компетенции/	Результат обучения: наименование компетенции,
индикатора	индикатора компетенции
	анализ и синтез информации, применять
	системный подход для решения
	поставленных задач
	Способен понимать принципы работы
ОПК-3	современных информационных технологий и
OHK-3	использовать их для решения задач
	профессиональной деятельности

Планируемые результаты изучения дисциплины:

Знать:

- основные информационные источники, содержащие термины и понятия, относящиеся к криптографии;
- математические основы современной криптографии; показатели и проблемы стойкости криптосистем;

Уметь:

- самостоятельно анализировать модели обеспечения информационной безопасности;
- осуществлять программную реализацию криптографических алгоритмов;
 Владеть:
 - навыками использования криптографических методов;
 - методами оценки эффективности криптографических систем.

4 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 академических часа.

Наименование	Всего часов	Семестр
паименование		4
Общая трудоемкость дисциплины	144	144
Контактная работа:	92,5	92,5
лекции	36	36
практические занятия	54	54
семинары	_	_
лабораторные работы	_	_
курсовой проект (работа)	_	_
Самостоятельная работа студента	18	18
Промежуточная аттестация	36	36
контактная работа	2,5	2,5
самостоятельная работа по подготовке к экзамену	33,5	33,5

5 Содержание дисциплины

5.1 Соотнесения тем (разделов) дисциплины и формируемых компетенций

	Количество часов	Компе	генции	ıbie I	0
Темы (разделы) дисциплины		УК-1	ОПК-3	Образовательные технологии	Оценочные средства
Тема 1. Организационное и правовое обеспечение информационной безопасности в авиации.	12	+	+	ВК, ПЗ, СРС	Д
Тема 2. Обеспечение информационной безопасности объектов критической информационной инфраструктуры в авиации.	16	+	+	ПЗ, СРС	П
Тема 3. Математические и алгоритмические основы обеспечения информационной безопасности БАС.	30	+	+	ПЗ, СРС	П
Тема 4. Основы технического обеспечения информационной безопасности БАС.	28	+	+	ПЗ, СРС	П
Тема 5. Программно-аппаратные средства обеспечения информационной безопасности БАС.	22	+	+	ПЗ, СРС	П
Всего по дисциплине					
Промежуточная аттестация	36				
Итого по дисциплине	144				- DI

 $[\]Pi 3$ – практическое занятие, СРС – самостоятельная работа студента, ВК – входной контроль, Π – проект, Π – доклад.

5.2 Темы (разделы) дисциплины и виды занятий

Наименование темы (раздела) дисциплины		ПЗ	С	ЛР	CPC	КР	Всего часов
							пасов
Тема 1. Организационное и правовое							
обеспечение информационной	4	6	-	-	2	-	12
безопасности в авиации.							
Тема 2. Обеспечение информационной		8			4		16
безопасности объектов критической	4	0	_	-	4	ı	16

Наименование темы (раздела)		ПЗ	С	ЛР	CPC	КР	Всего
дисциплины	Л	115		311	CIC	IXI	часов
информационной инфраструктуры в							
авиации.							
Тема 3. Математические и							
алгоритмические основы обеспечения	10	16	-	-	4	-	30
информационной безопасности БАС.							
Тема 4. Основы технического							
обеспечения информационной	10	14			4		28
безопасности БАС.							
Тема 5. Программно-аппаратные							
средства обеспечения	8	10			4		22
информационной безопасности БАС.							
Всего по дисциплине		54	-	-	18	-	108
Промежуточная аттестация							36
Итого по дисциплине							144

 Π – лекция, Π – практическое занятие, CPC – самостоятельная работа студента, C – семинар, Π – лабораторная работа, KP – курсовая работа (проект).

5.3 Содержание дисциплины

Tema 1. Организационное и правовое обеспечение информационной безопасности в авиации.

Нормативная база ИБ РФ. Основные положения ИКАО в области ИБ. Назначение, основные полномочия и структура Федеральной службы по техническому и экспортному контролю (ФСТЭК).

Тема 2. Обеспечение информационной безопасности объектов критической информационной инфраструктуры в авиации.

Правила категорирования объектов критической информационной инфраструктуры (КИИ) РФ. Особенности практической реализации положений о КИИ в авиации.

Tema 3. Математические и алгоритмические основы обеспечения информационной безопасности БАС.

Основы построения систем защиты информации в автоматизированных системах. Алгоритмы криптографической защиты информации. Модели информационных атак на БАС и способы защиты.

Тема 4. Основы технического обеспечения информационной безопасности БАС.

Структура технических средств защиты информации в линиях передачи данных БАС. Структура технических средств защиты информации в линиях управления БАС.

Тема 5. Программно-аппаратные средства обеспечения информационной безопасности БАС.

Бортовые средства обеспечения ЗИ БАС. Наземные средства обеспечения ЗИ БАС. Антидроновые программно-аппаратные средства.

5.4 Практические занятия (семинары)

Номер темы	Тематика практических занятий	Трудоемкость
дисциплины	(семинаров)	(часы)
1	Практическое занятие №1.	2
1	Практическое занятие №2.	4
2	Практическое занятие №3.	4
2	Практическое занятие №4.	4
2	Практическое занятие №5.	8
3	Практическое занятие №6.	8
4	Практическое занятие №7.	6
4	Практическое занятие №8.	8
5	Практическое занятие №9.	6
3	Практическое занятие №10.	4
Итого по дисц	иплине:	54

5.5 Лабораторный практикум

Лабораторный практикум учебным планом не предусмотрен.

5.6 Самостоятельная работа

Номер темы дисциплины	Виды самостоятельной работы	Трудо- емкость (часы)
1	1. Поиск, анализ информации и проработка учебного материала [1, 2, 3]. 2. Подготовка к докладу.	2
2	1. Поиск, анализ информации и проработка учебного материала [1,4,5-14]. 2. Подготовка к проекту.	4
3	 Поиск, анализ информации и проработка учебного материала [1,4,5-14]. Подготовка к проекту. 	4
4	 Поиск, анализ информации и проработка учебного материала [1,4,5-14]. Подготовка к проекту. 	4
5	1. Поиск, анализ информации и проработка учебного материала [1,4,5-	4

	14].2. Подготовка к проекту.	
Итого по дисциплине		18

5.7 Курсовые работы (проекты)

Курсовые работы (проекты) учебным планом не предусмотрены.

6 Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Макаренко С. И. Противодействие беспилотным летательным аппаратам. [Электронный ресурс]: Монография. СПб.: Наукоемкие технологии, 2020. 204 с. Режим доступа: https://www.researchgate.net/publication/346075919 Protivodejstvie_bespilotnym_letatelnym_apparatam_Counter_Unmanned_Aerial_Ve hicles/link/5fba11d892851c933f4dca84/download. Загл. с экрана. (дата обращения: 29.09.2023).
- 2. Фомичёв, В. М. **Криптографические методы защиты информации в 2 ч. Часть 1. Математические аспекты**: учебник для академического бакалавриата / В. М. Фомичёв, Д. А. Мельников; под ред. В. М. Фомичёва. М.: Издательство Юрайт, 2017. 209 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-01740-3. Режим доступа: www.biblio-online.ru/book/A01C7E90-A5B7-4B50-B348-31CB49CA5B3D . (дата обращения: 29.09.2023)
- 3. Фомичёв, В. М. **Криптографические методы защиты информации в 2 ч. Часть 2. Системные и прикладные аспекты: учебник для академического бакалавриата** / В. М. Фомичёв, Д. А. Мельников; под ред. В. М. Фомичёва. М.: Издательство Юрайт, 2018. 245 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-7090-6. Режим доступа : www.biblio-online.ru/book/AF99BBDE-AF3A-43A9-A90F-B99806553C25 (дата обращения: 29.09.2023)
- 4. Нестеров, С.А. **Основы информационной безопасности** [Электронный ресурс] : учебное пособие / С.А. Нестеров. Электрон. дан. Санкт-Петербург : Лань, 2018. 324 с. Режим доступа: https://e.lanbook.com/book/103908 . Загл. с экрана. (дата обращения: 29.09.2023)
 - б) дополнительная литература:
- 5. Васильева, И. Н. **Криптографические методы защиты информации**: учебник и практикум для академического бакалавриата / И. Н. Васильева. М.: Издательство Юрайт, 2017. 349 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-02883-6. Режим доступа: www.biblio-online.ru/book/38C7E67F-676F-4A9E-8E92-FD548EA095BA. (дата обращения: 29.09.2023)
- 6. **Введение в теоретико-числовые методы криптографии** [Электронный ресурс] : учебное пособие / М.М. Глухов [и др.]. Электрон. дан. Санкт-Петербург: Лань, 2011. 400 с. Режим доступа: https://e.lanbook.com/book/68466 . Загл. с экрана . (дата обращения: 29.09.2023)

- 7. Васильев, К. К. Математическое моделирование систем связи: учебное пособие / К. К. Васильев, М. Н. Служивый. 2-изд., перераб. и доп. Ульяновск : УлГТУ, 2010. 170 с [Электронный ресурс] Режим доступа: http://lib.ulstu.ru/venec/disk/2012/Vasiljev.pdf. Загл. с экрана. (дата обращения: 29.09.2023).
- в) перечень ресурсов информационно-телекоммуникационной сети «Интернет»:
 - 8 **Математическая криптография** [Электронный ресурс]. Режим доступа: http://cryptography.ru/. Загл. с экрана. (дата обращения: 29.09.2023).
 - 9 Видео материалы по моделированию систем в SimInTech. [Электронный ресурс]. Режим доступа: https://simintech.ru/science/publications/video/. Загл. с экрана. (дата обращения: 29.09.2023).
 - 10 **Новый подход к защите воздушного пространства** [Электронный ресурс]. Режим доступа: https://sky-x.pro/ . Загл. с экрана. (дата обращения: 29.09.2023).
 - 11 **Всё о беспилотной отрасли на одном ресурсе** [Электронный ресурс]. Режим доступа: https://russiandrone.ru/. Загл. с экрана. (дата обращения: 29.09.2023).
- г) программное обеспечение (лицензионное), базы данных, информационносправочные и поисковые системы:
 - 12 **Единое окно доступа к образовательным ресурсам** [Электронный ресурс]. Режим доступа: http://window.edu.ru, свободный (дата обращения: 29.09.2023).
 - 13 Электронная библиотека научных публикаций «eLIBRARY.RU» [Электронный ресурс]—Режим доступа: http://elibrary.ru/, свободный (дата обращения: 29.09.2023).
 - 14 Электронно-библиотечная система издательства «Лань» [Электронный ресурс] Режим доступа: http://e.lanbook.com/, свободный (дата обращения: 29.09.2023).
 - 15 **Среда динамического моделирования SimInTech** [Электронный ресурс] Режим доступа https://simintech.ru/ свободный (дата обращения: 29.09.2023).
 - 16 **Сайт библиотеки GNU MP** [Электронный ресурс] Режим доступа: http://gmplib.org свободный (дата обращения: 29.09.2023).
 - 17 **Сайт библиотеки GNU Crypto** [Электронный ресурс] Режим доступа: http://www.gnu.org/s/gnu-crypto свободный (дата обращения: 29.09.2023).

7 Материально-техническое обеспечение дисциплины

Компьютерные классы кафедры № 8 с доступом в Интернет, переносной проектор.

Информационно-справочные и материальные ресурсы библиотеки СПбГУ ГА.

Лицензионное программное обеспечение: Microsoft Office, Cygwin, SimInTech, Linux, SMath Studio, R-Studio.

8 Образовательные и информационные технологии

Дисциплина «Информационная безопасность» предполагает использование следующих образовательных технологий: входной контроль, практические занятия и самостоятельная работа студента.

Входной контроль проводится преподавателем в начале изучения дисциплины с целью коррекции процесса усвоения студентами дидактических единиц. Он осуществляется по вопросам из дисциплин, на которых базируется дисциплина «Информационная безопасность» (п. 2).

Практическое занятие по дисциплине «Информационная безопасность» содействует выработке у обучающихся умений и навыков применения знаний, полученных в ходе самостоятельной работы. Практические занятия как образовательная технология помогает студентам систематизировать, закрепить и углубить знания.

Самостоятельная работа студента проявляется В систематизации, планировании, контроле и регулировании его учебно-профессиональной деятельности, а также собственные познавательно-мыслительные действия без непосредственной помощь и руководства со стороны преподавателя. Основной целью самостоятельной работы студента является формирование навыка самостоятельного приобретения им знаний по некоторым несложным вопросам теоретического курса, закрепление и углубление полученных знаний, умений и практических занятий. Самостоятельная навыков время подразумевает выполнение студентом поиска, анализа информации, проработку на этой основе учебного материала, подготовку к докладу, а также подготовку проекта.

В рамках изучения дисциплины «Информационная безопасность» предполагается использовать в качестве информационных технологий среду Microsoft Office, Cygwin, SimInTech, Linux, SMath Studio, R-Studio.

9 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Фонд оценочных средств дисциплины «Информационная безопасность» представляет собой комплекс методических и контрольных измерительных материалов, предназначенных для определения качества результатов обучения и уровня сформированности компетенций обучающихся в ходе освоения

данной дисциплины. В свою очередь, задачами использования фонда оценочных средств являются осуществление как текущего контроля успеваемости студентов, так и промежуточной аттестации в форме зачета.

Фонд оценочных средств дисциплины «Информационная безопасность» для текущего контроля включает: проект и доклад.

Доклад представляет собой публичное выступление по представлению полученных результатов анализа определенной учебно-исследовательской темы. Типовые темы докладов представлены в п. 9.4.

Проект предназначен для проверки умений и навыков самостоятельно конструировать свои знания в процессе решения практических задач и проблем, ориентироваться в информационном пространстве. Проект является конечным программным продуктом.

Промежуточная аттестация по итогам освоения дисциплины проводится в виде зачета в 7 семестре. Этот вид промежуточной аттестации позволяет оценить уровень освоения студентом компетенций за весь период изучения дисциплины. Зачет предполагает устные ответы на 2 теоретических вопроса из перечня вопросов, вынесенных на промежуточную аттестацию, а также решение задачи.

9.1 Балльно-рейтинговая оценка текущего контроля успеваемости и знаний студентов по дисциплине

Не применяется.

9.2 Методические рекомендации по проведению процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Устный опрос оценивается следующим образом:

«зачтено»: обучающийся дает ответ на поставленный вопрос по существу и правильно отвечает на уточняющие вопросы;

«не зачтено»: обучающийся отказывается отвечать на поставленный вопрос, либо отвечает на него неверно и при формулировании дополнительных (вспомогательных) вопросов.

Решение ситуационных задач оценивается:

«зачтено»: обучающийся самостоятельно правильно решает задачу, дает обоснованную оценку по итогу решения;

«не зачтено»: обучающийся отказывается от выполнения задачи или не способен ее решить самостоятельно, а также с помощью преподавателя.

Доклад:

«зачтено»: грамотное и непротиворечивое изложение сути вопроса при использовании современных источников. Обучающийся способен сделать обоснованные выводы, а также уверенно отвечать на заданные в ходе обсуждения вопросы;

«не зачтено»: неудовлетворительное качество изложения материала и неспособность обучающегося сделать обоснованные выводы или рекомендации.

Письменная аудиторная работа:

«зачтено»: работа зачитывается в том случае, если задание выполнено полностью, в соответствии с поставленными требованиями и сделаны необходимые выводы;

«не зачтено»: работа не зачитывается в том случае, если обучающийся не выполнил задания, или результат выполнения задания не соответствует поставленным требованиям, а в заданиях и (или) ответах имеются существенные ошибки.

По итогам освоения дисциплины «Информационная безопасность» проводится аттестация обучающихся в форме зачета и предполагает решение задач на компьютере по билетам на практические вопросы из перечня.

Зачет является заключительным этапом изучения дисциплины «Информационная безопасность» и имеет целью проверить и оценить учебную работу студентов, уровень полученных ими знаний, умение применять их к решению практических задач, овладение практическими навыками в объеме требований образовательной программы на промежуточном этапе формирования компетенции ПК-2.

Во время подготовки к зачету студенты могут пользоваться материальным обеспечением, перечень которого утверждается заведующим кафедры.

На подготовку к ответу студенту предоставляется до 60 минут. По готовности к ответу или по вызову экзаменатора студент предъявляет решенные на зачете задачи. После ответа студента экзаменатор имеет право задать ему дополнительные вопросы в объеме учебной программы.

В итоге проведенного зачета студенту выставляется зачет/незачет. Экзаменатор несет личную ответственность за правильность выставленного зачета и оформления зачетной ведомости и зачетной книжки.

9.3 Темы курсовых работ (проектов) по дисциплине

Написание курсовых работ (проектов) учебным планом не предусмотрено.

17.4 Контрольные задания для проведения входного контроля остаточных знаний по обеспечивающим дисциплинам

- 1. Формальное определение алгоритма.
- 2. Пример вычислительной проблемы.
- 3. Формальное описание алгоритма. Отличия от кода языка высокого уровня.
- 4. Роль асимптотической нотации в определении производительности алгоритмов и структур данных.

5. Амортизационный анализ – назначение и примеры использования.

9.5 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерий и		
показатели		
оценивания	Этапы	Показатель
(индикаторы	формирования	Показатель
достижения)		
компетенций		

Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1),

Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности (ОПК-3)

Знать: - основные информационные источники, содержащие термины и понятия, относящиеся к ИБ;	1 этап формирования	 самостоятельно находит информационные источники, относящиеся к криптографическому анализу;
	2 этап формирования	 выделяет из имеющейся избыточной информации необходимую для решения поставленной задачи;
 математические основы современной криптографии; 	1 этап формирования	- называет основные классы криптосистем, простейшие шифры и их свойства;
показатели и проблемы стойкости криптосистем в БАС;	2 этап формирования	- строит математические модели шифров, классифицирует показатели стойкости криптосистем;
Уметь: - самостоятельно анализировать	1 этап формирования	- воспроизводит модели обеспечения информационной безопасности
модели обеспечения информационной безопасности БАС;	2 этап формирования	- анализирует стратегии обеспечения информационной безопасности, оценивает защищенность процессов переработки информации;
осуществлять программную реализацию криптографических	1 этап формирования	- составляет криптографические алгоритмы с использованием псевдокода и (или) блок-схем;

Критерий и показатели оценивания (индикаторы достижения) компетенций	Этапы формирования	Показатель
алгоритмов	2 этап формирования	- определяет криптографический алгоритм и составляет его с использованием заданного языка программирования;
Владеть: - навыками использования	1 этап формирования	- перечисляет основные криптографические задачи и методы их решения;
криптографических методов	2 этап формирования	 объясняет и применяет методы решения основных криптографических задач;
Владеть: - методами оценки эффективности криптографических систем	1 этап формирования	- перечисляет типы основных способов криптоанализа шифров, способы построения хеш-функций и основные требования к ним, основные типы электронной подписи и криптографических протоколов;
	2 этап формирования	анализирует эффективность хешфункций, классифицирует основные типы электронной подписи, оценивает их эффективность.

9.6 Типовые контрольные задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины

Типовые темы докладов:

- 6. Основные составляющие национальных интересов Российской Федерации в информационной сфере.
- 7. Информация, основные свойства и характеристики безопасности ее применения.
- 8. Комплексное обеспечение информационной безопасности государства.
- 9. Области и объекты по обеспечению информационной безопасности и защите информационной деятельности.
- 10. Технологии обеспечения безопасности обработки информации.
- 11. Обеспечение информационной безопасности в нормальных и чрезвычайных ситуациях.

Перечень типовых вопросов к зачету для проведения промежуточной аттестации по дисциплине

- 1. Определение информационной безопасности.
- 2. Что такое доступность информации?
- 3. Какие возможные степени секретности Вы знаете?
- 4. Перечислите основные типы угроз информационной безопасности. Приведите примеры к каждому типу.
- 5. Какие основные эволюционные подходы к обеспечению информационной безопасности деятельности общества Вы знаете?
- 6. Сформулируйте основные проблемы информационной безопасности.
- 7. Каковы основные группы моделей безопасности?
- 8. Какие модели разграничения доступа Вы знаете?
- 9. Какие существуют критерии оценки защищенности объектов?
- 10. Алгоритм блочного шифрования DES и его модификации.
- 11. Алгоритм блочного шифрования AES. Алгоритм Rijndael.
- 12. Алгоритм блочного шифрования RC6.
- 13. Алгоритм блочного шифрования Safer.
- 14. Потоковое шифрование. Метод RC4.
- 15.Потоковое шифрование. Метод SEAL.
- 16.Потоковое шифрование. Метод WAKE.
- 17. Ассиметричная криптосистема шифрования Эль-Гамаля.
- 18. Криптосистема, основанная на проблеме Диффи-Хеллмана.
- 19. Алгоритмы цифровой электронной подписи.
- 20. Стандарты цифровой электронной подписи.
- 21. Функции хэширования. Достоинства и недостатки различных видов хэширования.

Типовая задача для промежуточной аттестации:

Описать (привести блок-схему или псевдокод) алгоритм симметричного шифрования. Режим выполнения алгоритма — простая замена.

10 Методические рекомендации для обучающихся по освоению дисциплины

Методика преподавания дисциплины «Информационная безопасность» характеризуется совокупностью методов, приемов и средств обучения, обеспечивающих реализацию содержания и учебно-воспитательных целей дисциплины, которая может быть представлена как некоторая методическая система, включающая методы, приемы и средства обучения. Такой подход позволяет более качественно подойти к вопросу освоения дисциплины обучающимися.

Основными видами учебных занятий по дисциплине являются практические занятия. Объем и виды учебных занятий определены представленной рабочей программой дисциплины.

Практические занятия по дисциплине имеют целью:

- углубление, расширение и конкретизацию знаний, до уровня, на котором возможно их практическое использование;
- отработку навыков и умений в пользовании соответствующем математическим аппаратом.

Основу практических занятий составляет работа каждого обучаемого индивидуальная и (или) коллективная, по приобретению умений и навыков использования закономерностей, принципов, методов, форм и средств, составляющих содержание дисциплины в профессиональной деятельности и в подготовке к изучению дисциплин, формирующих компетенции выпускника. По результатам контроля знаний и умений преподаватель должен провести анализ хода и итогов практических занятий, отметить успехи студентов в решении учебной задачи, а также недостатки и ошибки, разобрать их причины и дать методические указания к их устранению. Таким образом, практические занятия являются важной формой обучения, в ходе которых знания студентов превращаются в профессиональные необходимые умения, навыки.

Зачет являются заключительными оценочным средством, по итогам которого выявляется общий уровень овладения обучающимися предусмотренных компетенций по тематическим вопросам всего курса.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.04 «Прикладная математика».

Программа рассмотрена и утверждена на заседании кафедры №8 «Прикладной математики и информатики»

« <u>28</u> » <u>leumsigns</u>	2023 года, протокол № 2	
Разработчики: к.п.н., доцент	(A)	Самойлов В.А.
(ученая степен И.о.заведующего кафедрой	ь, ученое звание, фамилия и инициалы разра № 8 «Прикладной матем	
к.т.н.	My	Земсков Ю.В.
(ученая степень, уч	ченое звание, фамилуя и инициалы заведующ	его кафеорои)
Программа согласована:		
Руководитель ОПОП		
д.т.н., доцент		Костин Г.А.
(ученая степень,	ученое звание, фамилия и инициалы руковод	ителя ОПОП)
Программа рассмотрена етодического совета Универ		заседании Учебно
да, протокол № 3.		Torriva IOR