

# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ИМЕНИ ГЛАВНОГО МАРШАЛА АВИАЦИИ А.А. НОВИКОВА»

УТВЕРЖДАЮ

Ю.Ю. Михальчевский

# РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Системы искусственного интеллекта в гражданской авиации

> Направление подготовки 01.03.04 Прикладная математика

Направленность программы (профиль)

Математическое и программное обеспечение беспилотных авиационных систем

Квалификация выпускника бакалавр

> Форма обучения очная

Санкт-Петербург 2023

#### 1 Цели освоения дисциплины

Целью освоения дисциплины «Системы искусственного интеллекта в гражданской авиации» является освоение студентами теоретических основ разработки интеллектуальных систем, а также формирование знаний, умений и навыков в области программирования систем искусственного интеллекта при помощи прикладных математических пакетов и на языке C++ и решения прикладных задач с их помощью.

Задачами освоения дисциплины являются:

- формирование знаний о современных концепциях и принципах разработки интеллектуальных систем;
- -приобретение умений выбирать и использовать способы разработки интеллектуальных систем для решения поставленной задачи, применяя теоретические знания;
- -овладение навыками программирования и применения систем искусственного интеллекта в профессиональной деятельности.

Дисциплина обеспечивает подготовку выпускника к решению задач профессиональной деятельности научно-исследовательского типа.

### 2 Место дисциплины в структуре ОПОП ВО

Дисциплина «Системы искусственного интеллекта в гражданской авиации» представляет собой дисциплину, относящуюся к Части, формируемой участниками образовательных отношений блока Блока 1 «Дисциплины (модули)».

Дисциплина «Системы искусственного интеллекта в гражданской авиации» базируется на результатах обучения, полученных при изучении дисциплины «Программирование».

Дисциплина «Системы искусственного интеллекта в гражданской авиации» является обеспечивающей для выполнения и защиты выпускной квалификационной работы и для подготовки к сдаче государственного экзамена.

Дисциплина «Системы искусственного интеллекта в гражданской авиации» изучается в 5 и 6 семестрах.

# 3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс освоения дисциплины «Системы искусственного интеллекта в гражданской авиации» направлен на формирование следующих компетенций:

| Код компетенции/ | Результат обучения: наименование компетенции, |
|------------------|-----------------------------------------------|
| индикатора       | индикатора компетенции                        |

| Код компетенции/  | Результат обучения: наименование компетенции,                      |
|-------------------|--------------------------------------------------------------------|
| индикатора        | индикатора компетенции                                             |
| ПК-3              | Способен применять знания в области прикладной математики и есте-  |
|                   | ственно-научных дисциплин при разработке математических моделей    |
|                   | и методов для объектов, процессов и систем на воздушном транспорте |
| $ИД_{\Pi K3}^{1}$ | Разрабатывает математические модели и методы для объектов, про-    |
|                   | цессов и систем на воздушном транспорте на основе знаний в области |
|                   | прикладной математики и естественно-научных дисциплин.             |
| $ИД_{\Pi K3}^2$   | Оценивает адекватность и эффективность математических моделей      |
| ПК-4              | Способен проводит научные исследования с применением методов       |
|                   | математического моделирования, используя аналитические и научные   |
|                   | пакеты прикладных программ для решения профессиональных задач в    |
|                   | сфере беспилотных авиационных систем.                              |
| $ИД_{\Pi K4}^{1}$ | Применяет методы математического моделирования для решения         |
|                   | научно-исследовательских задач в области воздушного транспорта.    |
| $ИД_{\Pi K4}^2$   | Решает профессиональные задачи в сфере беспилотных авиационных     |
|                   | систем с использованием аналитических и научных пакетов приклад-   |
|                   | ных программ.                                                      |

Планируемые результаты изучения дисциплины: Знать:

- основы нечеткой логики, структуру экспертных систем, основные понятия теории генетических алгоритмов, виды нейронных сетей.
- алгоритмы разработки экспертных систем, нейронных сетей и генетических алгоритмов.

#### Уметь:

- описывать продукционные правила, генетическую популяцию, нейронную сеть.
- использовать прикладные пакеты и языки программирования для реализации экспертной системы, генетического алгоритма, нейронной сети и интерпретировать полученные результаты;
- анализировать полученные решения в экспертных системах, нейронных сетях и генетических алгоритмах.

#### Владеть:

• навыками программирования экспертных систем, генетического алгоритма нейронной сети в прикладных пакетах и на языках высокого уровня.

# 4 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 10 зачетных единиц, 360 академических часов.

| Наименование                  | Всего | Семе | естр |
|-------------------------------|-------|------|------|
| паименование                  | часов | 5    | 6    |
| Общая трудоемкость дисциплины | 360   | 180  | 180  |

| Контактная работа:                                              | 155 | 72,5 | 82,5 |
|-----------------------------------------------------------------|-----|------|------|
| лекции                                                          | 60  | 28   | 32   |
| практические занятия                                            | 82  | 42   | 40   |
| семинары                                                        | -   | -    | -    |
| лабораторные работы                                             | 4   | -    | 4    |
| курсовой проект (работа)                                        | 4   | -    | 4    |
| Самостоятельная работа студента                                 | 138 | 74   | 64   |
| Промежуточная аттестация                                        | 72  | 36   | 36   |
| контактная работа                                               | 5   | 2,5  | 2,5  |
| самостоятельная работа по подготовке к экзамену (5, 6 семестры) | 67  | 33,5 | 33,5 |

# 5 Содержание дисциплины

# 5.1 Соотнесения тем (разделов) дисциплины и формируемых компетенций

|                                              | иче-    | Компетенции | Ba-<br>Je<br>O-                        | ч-<br>ва                   |
|----------------------------------------------|---------|-------------|----------------------------------------|----------------------------|
| Темы (разделы) дисциплины                    | Количе- | IIK - 2     | Образова<br>тельные<br>техноло-<br>гии | Оценоч-<br>ные<br>средства |
| Тема 1. Общие сведения о системах ИИ.        | 46      | +           | ВК, Л, ПЗ, СРС                         | УО, ИЗ                     |
| Тема 2. Нечеткие множества и нечеткая логика | 48      | +           | Л, ПЗ, СРС                             | УО, ИЗ,<br>СЗ              |
| Тема 3. Разработка экспертных си-<br>стем    | 50      | +           | Л, ПЗ, ЛР, СРС                         | УО, ИЗ,<br>СЗ              |
| Тема 4. Генетические алгоритмы               | 72      | +           | Л, ПЗ, ЛР, СРС                         | УО, ИЗ,<br>СЗ              |
| Тема 5. Нейронные сети                       | 72      | +           | Л, ПЗ, ЛР, СРС                         | УО, ИЗ,<br>СЗ              |
| Всего по дисциплине                          | 288     |             |                                        |                            |
| Промежуточная аттестация                     | 72      |             |                                        |                            |
| Итого по дисциплине                          | 360     |             |                                        |                            |

Сокращения: Л— лекция,  $\Pi 3$  — практическое занятие,  $\Pi P$  — лабораторная работа, CPC — самостоятельная работа студента, BK — входной контроль, YO — устный опрос, WA — индивидуальные задания, WA — ситуационная задача.

# 5.2 Темы (разделы) дисциплины и виды занятий

| Наименование темы (раздела) дисци-<br>плины | Л | П3 | С | ЛР | CPC | КР | Всего<br>часов |
|---------------------------------------------|---|----|---|----|-----|----|----------------|
| 5 семестр                                   |   |    |   |    |     |    |                |
| Тема 1. Общие сведения о системах ИИ        | 8 | 14 |   |    | 24  |    | 46             |

| Наименование темы (раздела) дисци-    | Л                  | ПЗ  | С   | ЛР  | CPC   | КР  | Всего |
|---------------------------------------|--------------------|-----|-----|-----|-------|-----|-------|
| плины                                 |                    | 311 |     | IXI | часов |     |       |
| 4                                     | 5 семес            | тр  |     |     |       |     |       |
| Тема 2. Нечеткие множества и нечеткая | 10                 | 14  |     |     | 24    |     | 48    |
| логика                                |                    |     |     |     |       |     |       |
| Тема 3. Разработка экспертных систем  | 10                 | 14  |     |     | 26    |     | 50    |
| Всего за семестр 5                    | 28                 | 42  |     |     | 74    |     | 144   |
| Промежуточная аттестация              |                    |     |     |     |       |     | 36    |
| Итого за семестр 5                    | Итого за семестр 5 |     |     |     |       | 180 |       |
| (                                     | б семес            | тр  |     |     |       |     |       |
| Тема 4. Генетические алгоритмы        | 16                 | 20  |     |     | 36    |     | 72    |
| Тема 5. Нейронные сети                | 16                 | 20  |     | 4   | 28    | 4   | 72    |
| Всего за семестр 6                    |                    | 40  |     | 4   | 64    | 4   | 144   |
| Промежуточная аттестация              |                    |     | •   |     |       |     | 36    |
| Итого за семестр 6                    |                    |     | 180 |     |       |     |       |
| Итого по дисциплине                   |                    |     |     |     | 324   |     |       |

Сокращения:  $\Pi$  – лекция,  $\Pi$  3 – практическое занятие, CPC – самостоятельная работа студента, C – семинар,  $\Pi$  – лабораторная работа, KP – курсовая работа.

### 5.3 Содержание дисциплины

#### Тема 1. Общие сведения о системах ИИ

История и основные направления исследований в области искусственного интеллекта. Классификация интеллектуальных информационных систем (системы с интеллектуальным интерфейсом, экспертные системы, самообучающиеся системы, адаптивные информационные системы).

#### Тема 2. Нечеткие множества и нечеткая логика

Нечеткие знания и способы их обработки. Нечеткие знания и способы их представления. Определение и основные характеристики нечетких множеств. Функции принадлежности и методы их построения. Арифметические и логические операции над нечеткими множествами. Расстояние между нечеткими множествами и индексы нечеткости. Нечеткие числа, нечеткие отображения и нечеткие функции. Понятие лингвистической переменной. Нечеткая логика. Системы нечеткого вывода. Продукционные правила. Алгоритм Мамдани. Алгоритм Цукамото.

# Тема 3. Разработка экспертных систем

Общие сведения об экспертных системах. Модели представления знаний. Традиционные способы обработки знаний. Методы приобретения знаний. Классификация методов приобретения знаний. Использование экспертных оценок для получения знаний. Методы экспертных оценок (непосредственное оценивание, ранжирование, парное сравнение).

Обработка и формализация экспертных оценок. Задачи обработки экспертных оценок. Определение обобщенных оценок. Коэффициент компетентности эксперта. Коэффициент относительной важности. Статистические методы анализа результатов экспертиз.

Технологии разработки экспертных систем. Идентификация проблемы. Извлечение знаний, Структурирование знаний. Формализация. Реализация. Тестирование. Эксплуатация.

### Тема 4. Генетические алгоритмы

Генетические алгоритмы в интеллектуальных системах. Сущность эволюционного моделирования. Характеристика генетических алгоритмов. Основные понятия ГА. Классический ГА. Создание популяции. Операторы отбора родителей. Операторы скрещивания (кроссинговер). Мутации. Создание популяции потомков. Этапы реализации генетических алгоритмов. Разновидности алгоритмов. Гибридный алгоритм. Параллельное выполнение ГА. Модернизации ГА. Математические модели. Примеры применения генетических алгоритмов для решения неформализуемых и трудноформализуемых задач.

## Тема 5. Нейронные сети

Перцептрон. Биологический нейрон и его искусственная модель. Математическая модель нейрона. Однослойная нейронная сеть. Правило Хебба. Ограниченность однослойной сети. Проблема исключающего ИЛИ. Многослойная сеть и алгоритм обратного распространения.

Обучение нейронных сетей. Теоремы существования. Методы проектирования. Методы обучения. Подготовка исходных данных для обучения. Радиальные базисные сети. Сеть Хемминга. Сеть Хопфилда.

Самообучающиеся нейронные сети. Характеристика принципа самообучения. Нейронные сети Кохонена и Гросберга. Математические модели сетей. Особенности представления данных. Область применения самообучающихся сетей.

# 5.4 Практические занятия

| Номер темы дис- |                                                                                                            | Трудо-  |
|-----------------|------------------------------------------------------------------------------------------------------------|---------|
| циплины         | Тематика практических занятий                                                                              | емкость |
|                 |                                                                                                            | (часы)  |
|                 | 5 семестр                                                                                                  |         |
| 1               | Практическое занятие 1-2. История и основные направления исследований в области искусственного интеллекта. | 4       |
|                 | Практическое занятие 3-5.Классификация интеллектуальных информационных систем.                             | 6       |

| Номер темы дисциплины | Тематика практических занятий                                                                                                                                                                            | Трудо-<br>емкость<br>(часы) |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                       | Практическое занятие 6-7. Классификация интеллектуальных информационных систем (системы с интеллектуальным интерфейсом, экспертные системы, самообучающиеся системы, адаптивные информационные системы). | 4                           |
|                       | Практическое занятие 8-9. Основные характеристики нечетких множеств. Арифметические и логические операции над нечеткими множествами                                                                      | 4                           |
| 2                     | Практическое занятие 10-11. Расстояние между нечеткими множествами и индексы нечеткости                                                                                                                  | 4                           |
|                       | Практическое занятие 12. Лингвистическая переменная. Нечеткая логика                                                                                                                                     | 2                           |
|                       | Практическое занятие 13-14. Продукционные правила. Системы вывода на продукционных правилах                                                                                                              | 4                           |
|                       | Практическое занятие 15-16. Модели представления знаний                                                                                                                                                  | 4                           |
| 3                     | Практическое занятие 17-19. Обработка и формализация экспертных оценок                                                                                                                                   | 6                           |
|                       | Практическое занятие 20-21. Разработка экспертных систем                                                                                                                                                 | 4                           |
| Всего за семестр 5    |                                                                                                                                                                                                          | 42                          |
|                       | 6 семестр                                                                                                                                                                                                |                             |
|                       | Практическое занятие 1-3. Представление данных в ГА                                                                                                                                                      | 6                           |
|                       | Практическое занятие 4-6. Классический ГА                                                                                                                                                                | 6                           |
| 4                     | Практическое занятие 7-8. Различные методы отбора                                                                                                                                                        | 4                           |
|                       | Практическое занятие 9-10. Различные методы скрещивания                                                                                                                                                  | 4                           |
|                       | Практическое занятие 11-13. Персептрон                                                                                                                                                                   | 6                           |
|                       | Практическое занятие 14-16. Функция активации                                                                                                                                                            | 6                           |
| 5                     | Практическое занятие 17-18. Сети с учителем и без учителя                                                                                                                                                | 4                           |
|                       | Практическое занятие 19-20. Алгоритм обратного распространения                                                                                                                                           | 4                           |
| Всего за семестр 6    | 40                                                                                                                                                                                                       |                             |
| Итого по дисципли     | ине                                                                                                                                                                                                      | 82                          |

# 5.5 Лабораторный практикум

| Номер темы дисциплины | Тематика практических занятий                                                                                      | Трудоемкость<br>(часы) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|------------------------|
|                       | 6 семестр                                                                                                          |                        |
| 4                     | Лабораторная работа 1. Применение генетических алгоритмов для решения неформализуемых и трудноформализуемых задач. | 2                      |
| 5                     | Лабораторная работа 2. Реализация логической функции с помощью нейронной сети                                      | 2                      |
| Всего за семес        | стр 6                                                                                                              | 4                      |

| Номер темы дисциплины | Тематика практических занятий | Трудоемкость<br>(часы) |
|-----------------------|-------------------------------|------------------------|
| Итого по дисц         | иплине                        | 4                      |

# 5.6 Самостоятельная работа

| Номер темы дисциплины | Виды самостоятельной работы                                                                                                                                                                                        | Трудо-<br>емкость<br>(часы) |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                       | 5 семестр                                                                                                                                                                                                          |                             |
| 1                     | 1. Изучение теоретического материала «Общие сведения о системах ИИ» (конспект лекций и рекомендуемая литература [1, 2, 6, 7]. 2. Подготовка к устному опросу и индивидуальному заданию                             | 24                          |
| 2                     | 1. Изучение теоретического материала «Нечеткие множества и нечеткая логика» (конспект лекций и рекомендуемая литература [1, 2, 3]. 2. Подготовка к устному опросу и индивидуальному заданию                        | 24                          |
| 3                     | <ol> <li>Изучение теоретического материала «Разработка экспертных систем» (конспект лекций и рекомендуемая литература [3, 4, 7, 8,9].</li> <li>Подготовка к устному опросу и индивидуальному заданию</li> </ol>    | 26                          |
| Всего за семест       |                                                                                                                                                                                                                    | 74                          |
|                       | 6 семестр                                                                                                                                                                                                          |                             |
| 4                     | 1. Изучение теоретического материала «Генетические алгоритмы» (конспект лекций и рекомендуемая литература [5, 6, 7, 10-13]. 2. Подготовка к устному опросу и индивидуальному заданию                               | 36                          |
| 5                     | 1. Изучение теоретического материала «Нейронные сети» (конспект лекций и рекомендуемая литература [2, 3, 4, 10-13]. Выполнение курсовой работы (проекта). 2. Подготовка к устному опросу и индивидуальному заданию | 28                          |
| Всего за семестр 6    |                                                                                                                                                                                                                    |                             |
| Итого по дисци        | иплине                                                                                                                                                                                                             | 138                         |

# 5.7 Курсовые работы

| Наименование этапа выполнения курсовой работы (проекта)                             | Трудоемкость<br>(часы) |
|-------------------------------------------------------------------------------------|------------------------|
| Этап 1. Выдача задания на курсовую работу (проект)                                  | 1                      |
| Этап 2. Выполнение раздела «Введение»                                               | 2                      |
| Этап 3. Выполнение раздела «Основная часть»                                         | 4                      |
| Этап 4. Выполнение разделов «Заключение», «Выводы».                                 | 2                      |
| Этап 5. Оформление курсовой работы (проекта)                                        | 2                      |
| Защита курсовой работы (проекта)                                                    | 1                      |
| Итого по курсовой работе (проекту):                                                 | 12                     |
| самостоятельная работа студента, отведенная на выполнение курсовой работы (проекта) | 8                      |

| Наименование этапа выполнения курсовой работы (проекта) | Трудоемкость<br>(часы) |
|---------------------------------------------------------|------------------------|
| согласно учебному плану                                 | 4                      |

### 6 Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Назаров, Д. М. **Интеллектуальные системы: основы теории нечетких множеств: учебное пособие для вузов** / Д. М. Назаров, Л. К. Конышева. 3-е изд., испр. и доп. М. : Издательство Юрайт, 2020. 187 с. (Высшее образование). ISBN 978-5-534-07496-3. Режим доступа: <a href="https://urait.ru/bcode/453458">https://urait.ru/bcode/453458</a> (дата обращения: 29.09.2023)
- 2. Горбаченко, В. И. Интеллектуальные системы: нечеткие системы и сети [Электронный ресурс]: учебное пособие для вузов / В. И. Горбаченко, Б. С. Ахметов, О. Ю. Кузнецова. —М.: Издательство Юрайт, 2018. 105 с. (Серия: Университеты России). ISBN 978-5-534-08359-0. Режим доступа: www.biblio-online.ru/book/EC96C02C-4E04-478C-9DCB-B20AC89A53B1 (дата обращения: 29.09.2023)
- 3. Загорулько, Ю. А. **Искусственный интеллект. Инженерия знаний** [Электронный ресурс] : учебное пособие для вузов / Ю. А. Загорулько, Г. Б. Загорулько. М. : Издательство Юрайт, 2018. 93 с. (Серия : Университеты России). ISBN 978-5-534-07198-6. Режим доступа : <a href="www.biblio-online.ru/book/172BD6D4-D6E7-4D94-8390-054975CB16C5">www.biblio-online.ru/book/172BD6D4-D6E7-4D94-8390-054975CB16C5</a> (дата обращения: 29.09.2023)
- 4. Бессмертный, И. А. Системы искусственного интеллекта [Электронный ресурс]: учебное пособие для академического бакалавриата / И. А. Бессмертный. М.: Издательство Юрайт, 2018. 130 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-02747-1. Режим доступа: <a href="https://www.biblio-online.ru/book/A1B77687-B5A6-4938-9C0E-F6288FDA143B">www.biblio-online.ru/book/A1B77687-B5A6-4938-9C0E-F6288FDA143B</a> (дата обращения: 29.09.2023)
- 5. Гладков, Л.А. **Генетические алгоритмы** [Электронный ресурс] : учебник / Л.А. Гладков, В.В. Курейчик, В.М. Курейчик. Электрон. дан. Москва : Физматлит, 2010. 368 с. Режим доступа: <a href="https://e.lanbook.com/book/2163">https://e.lanbook.com/book/2163</a> (дата обращения: 29.09.2023)
  - б) дополнительная литература:
- 6. Болотова, Л. С. Системы поддержки принятия решений в 2 ч. Часть 1 [Электронный ресурс]: учебник и практикум для академического бакалавриата / Л. С. Болотова; отв. ред. В. Н. Волкова, Э. С. Болотов. М.: Издательство Юрайт, 2018. 257 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-8250-3. Режим доступа: <a href="www.biblio-online.ru/book/3A3C4EEA-8847-45E3-A442-C19EB93FA07E">www.biblio-online.ru/book/3A3C4EEA-8847-45E3-A442-C19EB93FA07E</a> (дата обращения: 29.09.2023)

- 7. Болотова, Л. С. Системы поддержки принятия решений в 2 ч. Часть 2 [Электронный ресурс]: учебник и практикум для академического бакалавриата / Л. С. Болотова; отв. ред. В. Н. Волкова, Э. С. Болотов. М.: Издательство Юрайт, 2018. 250 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-8251-0. Режим доступа: www.biblio-online.ru/book/4C8A042C-6338-4AAB-AAA1-602545D14FE1 (дата обращения: 29.09.2023)
- 8. Системы поддержки принятия решений [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / В. Г. Халин [и др.]; под ред. В. Г. Халина, Г. В. Черновой. М. : Издательство Юрайт, 2018. 494 с. (Серия : Бакалавр и магистр. Академический курс). ISBN 978-5-534-01419-8. Режим доступа : <a href="www.biblio-online.ru/book/C65198DA-46BA-4EC4-B0ED-FFEEACE35A61">www.biblio-online.ru/book/C65198DA-46BA-4EC4-B0ED-FFEEACE35A61</a> (дата обращения: 29.09.2023)
- в) перечень ресурсов информационно-телекоммуникационной сети «Интернет»:
- 9 **Национальный Открытый Университет «ИНТУИТ»** [Электронный ресурс]. Режим доступа: <a href="https://www.intuit.ru/">https://www.intuit.ru/</a> свободный (дата обращения: 29.09.2023)
- 10 **Единое окно доступа к образовательным ресурсам** [Электронный ресурс]. Режим доступа: <a href="http://window.edu.ru">http://window.edu.ru</a> свободный (дата обращения: 29.09.2023)
- г) программное обеспечение (лицензионное), базы данных, информационно-справочные и поисковые системы:
- 11 **Электронная библиотека научных публикаций «eLIBRARY.RU»** [Электронный ресурс] Режим доступа: <a href="http://elibrary.ru/">http://elibrary.ru/</a> свободный (дата обращения: 29.09.2023)
- 12 Электронно-библиотечная система издательства «Лань» [Электронный ресурс] Режим доступа: <a href="https://e.lanbook.com">https://e.lanbook.com</a> свободный (дата обращения: 29.09.2023)
- 13 Электронная библиотека механико-математического факультета МГУ [Электронный ресурс] Режим доступа: <a href="http://lib.mexmat.ru/">http://lib.mexmat.ru/</a> свободный (дата обращения: 29.09.2023)

# 7 Материально-техническое обеспечение дисциплины

Компьютерные классы кафедры №8 с доступом в Интернет, переносной проектор.

Информационно-справочные и материальные ресурсы библиотеки СПбГУ ГА.

БЛА: DJI Tello EDU, Robomaster TT Tello Talent, Parrot AR.Drone 2.0.

Цифровые процессоры, отладочные платы, Software Defined Radio (SDR): Отладочная плата STK600 (микроконтроллер AVR ATmega), Отладочная плата STM32F4 (микроконтроллер ARM Cortex).

Российское лицензионное программное обеспечение: SMath Studio.

### 8 Образовательные и информационные технологии

В рамках изучения дисциплины «Системы искусственного интеллекта в гражданской авиации» предполагается использовать следующие образовательные технологии: входной контроль, лекции, практические занятия, лабораторная работа, самостоятельная работа студентов.

Входной контроль проводится преподавателем в начале изучения дисциплины с целью коррекции процесса усвоения студентами дидактических единиц. Он осуществляется по вопросам из дисциплин, на которых базируется дисциплина «Системы искусственного интеллекта в гражданской авиации».

Лекция как образовательная технология представляет собой устное, систематически последовательное изложение преподавателем учебного материала с целью организации целенаправленной познавательной деятельности обучающихся по овладению знаниями, умениями и навыками читаемой дисциплины. В лекции делается акцент на реализацию главных идей и направлений в изучении дисциплины, дается установка на последующую самостоятельную работу.

По дисциплине «Системы искусственного интеллекта в гражданской авиации» планируется проведение как информационных, так и проблемных лекций. Информационные лекции направлены на систематизированное изложение накопленных и актуальных научных знаний. Проблемные лекции активизируют интеллектуальный потенциал и мыслительную деятельность студентов, которые приобретают умение вести дискуссию. В ходе проблемной лекции преподаватель включает в процесс изложения материала серию проблемных вопросов. Как правило, это сложные, ключевые для темы вопросы. Студенты приглашаются для размышлений и поиску ответов на них по мере их постановки.

Практическое занятие обеспечивает связь теории и практики, содействует выработке у обучающихся умений и навыков применения знаний, полученных на лекции и в ходе самостоятельной работы. Практические занятия как образовательная технология помогают студентам систематизировать, закрепить и углубить знания теоретического характера.

Лабораторная работа позволяет организовать учебную работу с реальными информационными объектам. Лабораторная работа как образовательная технология реализует следующие функции: овладение системой средств и методов практического исследования обучающимися, развитие творческих исследовательских умений обучающихся и расширение возможностей использования теоретических знаний для решения практических задач.

Самостоятельная работа: является составной частью учебной работы. Ее основной целью является формирования навыка самостоятельного приобретения новых знаний по вопросам теоретического курса, закрепление и углубление полученных знаний, работа с периодическими изданиями и научно-популярной литературой, в том числе находящейся в информационных сетях, отработка навыков работы со специализированными программными пакетами. Самостоятельная работа подразумевает выполнение студентом поиска, анализа инфортельного правота подразумевает выполнение студентом поиска, анализа инфортельного правота подразумевает выполнение студентом поиска, анализа инфортельного правота подразумевает выполнение студентом поиска, анализа инфортельного приобретения на правота подразумевает выполнение студентом поиска, анализа инфортельного приобретения на правота подразумевает выполнение студентом поиска, анализа инфортельного правота по правота по

мации, проработку на этой основе учебного материала, подготовку к устному опросу, а также подготовку к докладам и индивидуальным заданиям.

В рамках изучения дисциплины «Системы искусственного интеллекта в гражданской авиации» предполагается использовать в качестве информационных технологий среду SMath Studio.

# 9 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Фонд оценочных средств дисциплины «Системы искусственного интеллекта в гражданской авиации» представляет собой комплекс методических и контрольных измерительных материалов, предназначенных для определения качества результатов обучения и уровня сформированности компетенций обучающихся в ходе освоения данной дисциплины. В свою очередь, задачами использования фонда оценочных средств являются осуществление как текущего контроля успеваемости студентов, так и промежуточной аттестации в форме экзамена.

Фонд оценочных средств дисциплины «Системы искусственного интеллекта в гражданской авиации» для текущего контроля включает: устные опросы, ситуационные задачи и индивидуальные задания.

Устный опрос проводится на практических занятиях в течение 10 минут с целью контроля усвоения теоретического материала, излагаемого на лекции. Перечень вопросов определяется уровнем подготовки учебной группы, а также индивидуальными особенностями обучающихся.

Индивидуальные задания и ситуационные задачи носят практикоориентированный характер, используются в рамках практической подготовки с целью оценки формирования, закрепления, развития практических навыков и компетенций по профилю образовательной программы.

Промежуточная аттестация по итогам освоения дисциплины проводится в виде экзамена в 5,6 семестрах.

Экзамен (5,6 семестры) позволяет оценить уровень освоения студентом компетенций за весь период изучения дисциплины. Экзамен предполагает устные ответы на 2 теоретических вопроса из перечня вопросов, вынесенных на промежуточную аттестацию, а также решение ситуационной задачи.

# 9.1 Балльно-рейтинговая система оценки текущего контроля успеваемости и знаний и промежуточной аттестации студентов

Не применяется.

# 9.2 Методические рекомендации по проведению процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Устный опрос оценивается следующим образом:

«зачтено»: обучающийся дает ответ на поставленный вопрос по существу и правильно отвечает на уточняющие вопросы;

«не зачтено»: обучающийся отказывается отвечать на поставленный вопрос, либо отвечает на него неверно и при формулировании дополнительных (вспомогательных) вопросов.

Решение ситуационных задач оценивается:

«зачтено»: обучающийся самостоятельно правильно решает задачу, дает обоснованную оценку по итогу решения;

«не зачтено»: обучающийся отказывается от выполнения задачи или не способен ее решить самостоятельно, а также с помощью преподавателя.

Индивидуальное задание:

«зачтено»: работа зачитывается в том случае, если задание выполнено полностью, в соответствии с поставленными требованиями и сделаны необходимые выводы;

«не зачтено»: работа не зачитывается в том случае, если обучающийся не выполнил задания, или результат выполнения задания не соответствует поставленным требованиям, а в заданиях и (или) ответах имеются существенные ошибки.

## 9.3 Темы курсовых работ (проектов) по дисциплине

Написание курсовых работ (проектов) учебным планом не предусмотрено.

# 9.4 Контрольные вопросы для проведения входного контроля остаточных знаний по обеспечивающим дисциплинам

- 1. Алгоритм генерации размещений с повторением и без повторений.
- 2. Генерация случайных перестановок.
- 3. Алгоритм генерации сочетаний с повторением и с условием.
- 4. Алгоритм определения изоморфности графов.
- 5. Метод поиска в глубину на простом неориентированном графе.
- 6. Поиск числа внешней устойчивости.
- 7. Поиск числа внутренней устойчивости.
- 8. Поиск диаметра, радиуса и центра графа.
- 9. Алгоритм построения дополнения случайного неориентированного графа.
  - 10. Алгоритм построения случайного ориентированного графа.
  - 11. Поиск числа маршрутов определенной длины в графе.
  - 12. Поиск минимального пути между заданными вершинами графа.
  - 13. Алгоритм Уоршолла.
  - 14. Алгоритм Дейкстры.
  - 15. Алгоритм компенсации матрицы.
  - 16. Алгоритм топологической сортировки.
  - 17. Кодировка дерева. Двоичная кодировка. Код Прюфера.
  - 18. Двудольные графы и поиск паросочетаний.
  - 19. Алгоритм объединения множеств.
  - 20. Сетевой план. Потоки в сетях. Максимальный поток в сети.

- 21. Сеть. Алгоритм Форда-Фалкерсона.
- 22. Транспортная задача. Поиск опорного плана.
- 23. Метод Фогеля.
- 24. Кратчайший путь в орграфе. Алгоритм Дейкстры.
- 25. Планарность. Плоский граф. Подразбиение. Гомеоморфность.
- 26. Задача раскраски графа.
- 27. Эйлеровы циклы. Алгоритм построения эйлерова цикла в графе.
- 28. Задача о почтальоне.
- 29. Задача коммивояжера. Метод ветвей и границ.
- 30. Алгоритмы сортировки вставками. Пузырьковая сортировка.
- 31. Сортировка всплытием Флойда.
- 32. Алгоритмы поиска.

# 9.5 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

| Компе- | Показатели оцени-              | Критерии оценивания                                                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| тенции | вания (индикаторы              |                                                                                                                                                                                                                                                                                                                                                                                               |
|        | достижения) ком-               |                                                                                                                                                                                                                                                                                                                                                                                               |
|        | петенций                       |                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                | 1 этап                                                                                                                                                                                                                                                                                                                                                                                        |
| ПК-3   | $ИД_{\Pi K3}^{1}$              | Знает:                                                                                                                                                                                                                                                                                                                                                                                        |
|        | И $\mathcal{A}^2_{\Pi K3}$     | воспроизводит основы нечеткой логики, способы отбора и мутации популяции, способы задания функции активации. описывает структуру экспертных систем, основные понятия теории генетических алгоритмов, виды нейронных сетей.  Умеет: перечисляет прикладные пакеты и языки программирования для задания входных данных экспертной системы, генетического адгоритмов, мойромной сети             |
|        |                                | нетического алгоритма, нейронной сети. описывает продукционные правила, умеет создать генетическую популяцию, создать нейронную сеть. Владеет: программирует интерфейса пользователя экспертных систем, популяции генетического алгоритма и простейших функций нейрона в прикладных пакетах и на языках высокого уровня. задает тестовые наборы данных для конкретных типов прикладных задач. |
|        |                                | 2 этап                                                                                                                                                                                                                                                                                                                                                                                        |
| ПК-4   | ИД <sup>1</sup> <sub>ПК4</sub> | Знает: применение нечеткой логики для производства продукционных правил, методы обработки экспертных оценок, методы отбора, скрещивания и мутации, способы реализации функций нейрона. анализирует алгоритмы разработки экспертных систем,                                                                                                                                                    |
|        | ИД <sup>2</sup> <sub>ПК4</sub> | нейронных сетей и генетических алгоритмов, виды отбора, кроссинговера, мутации, алгоритмы построения искусственных нейронов.                                                                                                                                                                                                                                                                  |

| Умеет:                                                  |
|---------------------------------------------------------|
| использует прикладные пакеты и языки программирования   |
| для обработки данных экспертной системы, генетического  |
| алгоритма, нейронной сети и реализации решения.         |
| разрабатывает экспертную систему, кодирует популяцию и  |
| реализовывает ее жизненный цикл, создает и обучает      |
| нейронную сеть анализировать и интерпретировать полу-   |
| ченные результаты;                                      |
| анализирует полученные результаты, объясняет получен-   |
| ные решения в экспертных системах, нейронных сетях и    |
| генетических алгоритмов.                                |
| Владеет:                                                |
| программирует блока обработки и объяснения экспертных   |
| систем, обработки популяции генетического алгоритма и   |
| радиальные базисные сети в прикладных пакетах и на язы- |
| ках высокого уровня.                                    |
| ·· Jr -                                                 |

### Шкала оценивания при проведении промежуточной аттестации

«Отлично» выставляется обучающемуся, показавшему всесторонние, систематизированные, глубокие знания по рассматриваемой компетенции и умение уверенно применять их на практике при решении задач, свободное и правильное обоснование принятых решений. Отвечая на вопрос, может быстро и безошибочно проиллюстрировать ответ собственными примерами. Обучающийся самостоятельно правильно решает ситуационную задачу, дает обоснованную оценку итогам решения.

«Хорошо» выставляется обучающемуся, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задачи некоторые неточности, хорошо владеет всем содержанием, видит взаимосвязи, но не всегда делает это самостоятельно без помощи преподавателя. Обучающийся решает ситуационную задачу верно, но при помощи преподавателя.

«Удовлетворительно» выставляется обучающемуся, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы в рамках заданной компетенции, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации. Отвечает только на конкретный вопрос, соединяет знания из разных разделов курса только при наводящих вопросах преподавателя. Ситуационная задача решена не полностью, или содержатся незначительные ошибки в расчетах.

«Неудовлетворительно» выставляется обучающемуся, который не знает большей части основного содержания учебной программы дисциплины в рамках компетенций, допускает грубые ошибки в формулировках основных поня-

тий дисциплины и не умеет использовать полученные знания при решении типовых практических задач. Не раскрыты глубина и полнота при ответах. Ситуационная задача не решена даже при помощи преподавателя.

# 9.6.1 Контрольные задания для проведения текущего контроля успеваемости

### Примерный перечень вопросов для устного опроса

#### 5 семестр

- 1. Понятие искусственного интеллекта.
- 2. Виды интеллектуальных информационных систем.
- 3. Нечеткие знания.
- 4. Способы обработки нечетких знаний и способы представления.
- 5. Нечеткие множества.
- 6. Функция принадлежности.
- 7. Операции над нечеткими множествами.
- 8. Хеммингово расстояние между нечеткими множествами.
- 9. Евклидово расстояние между нечеткими множествами.
- 10. Индексы нечеткости.
- 11. Нечеткие числа.
- 12. Нечеткие функции.
- 13. Понятие лингвистической переменной.
- 14. Нечеткая логика.
- 15. Системы нечеткого вывода.
- 16. Продукционные правила.
- 17. Алгоритм Мамдани.
- 18. Алгоритм Цукамото.
- 19. Способы представления знаний.
- 20. Методы экспертных оценок.
- 21. Формализация экспертных оценок.
- 22. Определение обобщенных оценок.
- 23. Статистические методы анализа результатов экспертиз..
- 24. Структура экспертных систем.

#### 6 семестр

- 1. Сущность эволюционного моделирования.
- 2. Основные понятия ГА.
- 3. Классический ГА.
- 4. Способы кодирования популяции.
- 5. Операторы отбора родителей.
- 6. Операторы скрещивания (кроссинговер).
- 7. Выбор мутации.
- 8. Формирование популяции потомков.

- 9. Гибридный алгоритм.
- 10. Параллельный ГА.
- 11. Модернизации ГА.
- 12. Перцептрон.
- 13. Математическая модель нейрона.
- 14. Однослойная нейронная сеть.
- 15. Правило Хебба.
- 16. Многослойная сеть.
- 17. Алгоритм обратного распространения.
- 18. Методы обучения нейронных сетей.
- 19. Радиальные базисные сети.
- 20. Сеть Хемминга.
- 21. Принцип самообучения нейронных сетей.
- 22. Нейронные сети Кохонена и Гросберга.

# Примерный перечень индивидуальных заданий

### 5 семестр

## Примеры заданий к индивидуальному заданию №1

1) Даны A и B – нечеткие множества на универсальном множестве E. Найти A-B.

$$A=0,5/x_1+0,4/x_2+0,1/x_3+1/x_4$$
  
 $B=0,1/x_1+0,3/x_2+0,1/x_3+0,5/x_4$ 

Даны A и B – нечеткие множества на универсальном множестве Е. Найти A∩B.

$$A=0,1/x_1+0,3/x_2+0,1/x_3+0,5/x_4$$
  
 $B=0,9/x_1+0,5/x_2+0,6/x_3+1/x_4$ 

3) Даны A и B – нечеткие множества на универсальном множестве E. Найти B-A.

$$A=0,1/x1+0,3/x2+0,1/x3+0,5/x4$$
  
 $B=0,9/x_1+0,5/x_2+0,6/x_3+1/x_4$ 

4) Даны A и B — нечеткие множества на универсальном множестве E. Найти  $A \cup B$ .

$$A=0,5/x_1+0,4/x_2+0,1/x_3+1/x_4$$
  
 $B=0,9/x_1+0,5/x_2+0,6/x_3+1/x_4$ 

# Примеры заданий к индивидуальному заданию №2

1) Даны нечеткие множества A и B. Найти расстояние Хеминга  $\rho(A,B)$ . A=0,5/x1+0,4/x2+0,1/x3+1/x4 B=0,9/x1+0,5/x2+0,6/x3+1/x4

- 2) Даны A, B и C нечеткие множества на универсальном множестве E. Найти доминируемые пары и дополнения для каждого множества. A=0,5/x1+0,4/x2+0,1/x3+1/x4 B=0,1/x1+0,3/x2+0,1/x3+0,5/x4 C=0,9/x1+0,5/x2+0,6/x3+1/x4
- 3) Даны A и B нечеткие множества на универсальном множестве E. Найти A⊕B.

$$A=0,5/x1+0,4/x2+0,1/x3+1/x4$$
  
 $B=0,1/x1+0,3/x2+0,1/x3+0,5/x4$ 

#### 6 семестр

### Примеры заданий к индивидуальному заданию №1

- 1) С помощью ГА найти глобальный минимум функции  $x^4$ - $40x^3$ + $62x^2$ -120x+90 на интервале от 0 до 7.
- 2) С помощью ГА найти глобальный минимум функции  $x^4$ - $25x^3$ + $70x^2$ -105x+90 на интервале от 1 до 8.
- 3) С помощью ГА найти глобальный минимум функции  $x^4$ - $80x^3$ + $55x^2$ -120x+50 на интервале от 0 до 7.

# Перечень типовых вопросов к экзамену для проведения промежуточной аттестации по дисциплине (5 семестр)

- 1. Искусственный интеллект. История. Основные направления исследований.
  - 2. Интеллектуальные системы. Классификация.
- 3. Определение и основные характеристики нечетких множеств. Множество  $\alpha$ -уровня.
  - 4. Функции принадлежности и методы их построения.
- 5. Операции над нечеткими множествами. Включение, равенство, дополнение, пересечение, объединение, разность, симметрическая разность, дизъюнктивная сумма.
- 6. Операции над нечеткими множествами. Понятие треугольной нормы и конормы, свойства. Граничное пересечение и объединение, драстическое пересечение и объединение, λ –сумма.
- 7. Операции над нечеткими множествами. Алгебраическое произведение, алгебраическая сумма, свойства.
- 8. Операции над нечеткими множествами. Возведение в степень, концентрация, умножение на число, выпуклая комбинация.

- 9. Операции над нечеткими множествами. Декартово произведение, оператор увеличения нечеткости.
- 10. Операции над нечеткими множествами. Расстояние между нечеткими множествами. Расстояние Хемминга, Евклидово расстояние.
- 11. Индексы нечеткости. Обычное множество, ближайшее к нечеткому.
- 12. Понятия: Нечеткая величина, нечеткий интервал, нечеткие числа, носитель нечеткого числа. Нечеткие отображения и нечеткие функции, принцип обобщения.
  - 13. Арифметические операции над нечеткими числами.
- 14. Нечеткое число (L-R)-типа. Сложение, вычитание, умножение, деление, обратное значение.
- 15. Нечеткий интервал (L-R)-типа. Сложение, вычитание, умножение, деление, расширенный минимум, расширенный максимум.
  - 16. Концепция нечеткой и лингвистической переменных.
- 17. Нечеткая логика, нечеткое высказывание, логические операции: отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность.
- 18. Системы нечеткого вывода, продукционное правила, фаззификация, агрегирование, активизация, аккумуляция, дефаззификация.
  - 19. Метод центра тяжести, метод центра площади.
- 20. Метод левого модального значения, метод правого модального значения.
  - 21. Алгоритм Мамдани.
  - 22. Алгоритм Цукамото.
  - 23. Упрощенный алгоритм нечеткого вывода.
  - 24. Знания, свойства, классификация. Методы извлечения знаний.
- 25. Структура статических и динамических экспертных систем. Этапы разработки экспертных систем.
  - 26. Модели представления знаний. Продукционная модель.
- 27. Методы экспертных оценок (непосредственное оценивание, ранжирование, парное сравнение).
  - 28. Обработка и формализация экспертных оценок.
- 29. Коэффициент компетентности эксперта. Коэффициент относительной важности.
  - 30. Статистические методы анализа результатов экспертиз.
  - 31. Технологии разработки экспертных систем.

Типовая ситуационная задача к экзамену для проведения промежуточной аттестации по дисциплине (5 семестр)

Представьте, что вам нужно выполнить приведенное ниже задание. Проанализируйте задание, для решения данной задачи из методов, изученных в рамках данного курса, выберите оптимальный, обоснуйте выбор, выполните задание, объясните полученное решение.

Задание: Даны нечеткие множества A и B на универсальном множестве E. Найти A⊕B.

 $A=0,5/x_1+0,4/x_2+0,1/x_3+1/x_4$  $B=0,1/x_1+0,3/x_2+0,1/x_3+0,5/x_4$ 

# Перечень типовых вопросов к экзамену для проведения промежуточной аттестации по дисциплине (6 семестр)

- 1. Основные понятия ГА: ген, хромосома, популяция. Способы представления данных, примеры двоичного и вещественного кодирования.
  - 2. Классический ГА.
  - 3. Операторы выбора родителей. Турнир, рулетка.
- 4. Операторы выбора родителей. Панмиксия, инбридинг, аутобридинг, селекция.
- 5. Дискретная рекомбинация. Промежуточная и линейная рекомбинации.
  - 6. Кроссинговер. Одноточечный, двухточечный, многоточечный.
- 7. Кроссинговер. Однородный, триадный, перетасовочный, с уменьшением замены.
  - 8. Мутация дискретных и вещественных генов. Плотность мутации.
- 9. Операторы отбора особей в новую популяцию (усечение, вытеснение).
- 10. Операторы отбора особей в новую популяцию (элитарный, метод отжига).
  - 11. Виды ГА: канонический, генитор.
  - 12. Виды ГА: прерывистое равновесие, гибридный.
  - 13. Параллельный ГА. Миграция.
  - 14. Параллельный ГА. «Рабочий и хозяин», островная модель.
  - 15. Достоинства и недостатки ГА.
  - 16. Нейронные сети. Биологическая структура. Синапсы.
  - 17. Искусственный нейрон. Входы, веса и сумматор.
- 18. Искусственный нейрон. Функция активации (пороговая, сигмоидальная гиперболический тангенс).
  - 19. Однослойные и многослойные нейронные сети.
  - 20. Сети прямого распространения, сети с обратными связями.
  - 21. Обучение нейронной сети. Обучение с учителем и без учителя.

- 22. Однослойный и многослойный персептроны.
- 23. Алгоритмы обучения. Обратного распространения ошибки, правила Хебба, Дельта-правило.

# Типовая ситуационная задача к экзамену для проведения промежуточной аттестации по дисциплине (6 семестр)

Представьте, что вам нужно выполнить приведенное ниже задание. Проанализируйте задание, для решения данной задачи из методов, изученных в рамках данного курса, выберите оптимальный, обоснуйте выбор, выполните задание, объясните полученное решение.

Задание: С применением методов ГА найти глобальный минимум функции  $x^4$ - $40x^3$ + $62x^2$ -120x+90 на интервале от 0 до 7.

# 10 Методические рекомендации для обучающихся по освоению дисциплины

Приступая к изучению дисциплины «Системы искусственного интеллекта в гражданской авиации», обучающемуся необходимо ознакомиться с тематическим планом занятий и списком рекомендованной литературы. Также ему следует уяснить, что уровень и глубина усвоения дисциплины зависят от активной и систематической работы на лекциях и практических занятиях. Также в этом процессе важное значение имеет самостоятельная работа, направленная на вовлечение обучающегося в самостоятельную познавательную деятельность.

Основными видами аудиторной работы студентов являются лекции, лабораторные работы и практические занятия. На первом занятии преподаватель осуществляет входной контроль по вопросам дисциплин, являющимися предшествующими для дисциплины «Системы искусственного интеллекта в гражданской авиации» (п. 2).

В ходе лекции преподаватель излагает и разъясняет основные, наиболее сложные понятия, а также соответствующие теоретические и практические проблемы, дает задания и рекомендации для практических занятий и лабораторных работ, а также указания по выполнению обучающимися самостоятельной работы.

Задачами лекций являются:

- ознакомление обучающихся с целями, задачами и структурой дисциплины «Системы искусственного интеллекта в гражданской авиации», ее местом в системе технических и математических наук, связями с другими дисциплинами;
- краткое, но по существу, изложение комплекса основных научных понятий, подходов, методов, принципов данной дисциплины;
- краткое изложение наиболее существенных положений, раскрытие особенно сложных, актуальных вопросов;
- определение перспективных направлений дальнейшего развития научного знания в области прикладной математики.

Темы лекций и рассматриваемые в ходе их вопросы приведены в п. 5.3.

Значимым фактором полноценной и плодотворной работы обучающегося на лекции является культура ведения конспекта. Принципиально неверным, но получившим в наше время достаточно широкое распространение, является отношение к лекции как к «диктанту», который обучающийся может аккуратно и дословно записать. Слушая лекцию, необходимо научиться выделять и фиксировать ее ключевые моменты, записывая их более четко и выделяя каким-либо способом из общего текста.

Полезно применять какую-либо удобную систему сокращений и условных обозначений. Применение такой системы поможет значительно ускорить процесс записи лекции. Рекомендуется в конспекте лекций оставлять свободные места, или поля, например, для того, чтобы была возможность записи необходимой информации при работе над материалами лекций.

При ведении конспекта лекции необходимо четко фиксировать рубрикацию материала — разграничение разделов, тем, вопросов, параграфов и т. п. Обязательно следует делать специальные пометки, например, в случаях, когда какое-либо определение, положение, вывод остались неясными, сомнительными. Иногда обучающийся не успевает записать важную информацию в конспект. Тогда необходимо сделать соответствующие пометки в тексте, чтобы не забыть, восполнить эту информацию в дальнейшем.

Качественно сделанный конспект лекций поможет обучающемуся в процессе самостоятельной работы и при подготовке к сдаче зачёта с оценкой.

Практические занятия и лабораторные работы по дисциплине «Системы искусственного интеллекта в гражданской авиации» проводятся в соответствии с пп. 5.4 и 5.5. Цели практических занятий: закрепить теоретические знания, полученные студентом на лекциях и в результате самостоятельного изучения соответствующих разделов рекомендуемой литературы; приобрести начальные практические умения и навыки.

Темы практических занятий заранее сообщаются обучающимся для того, чтобы они имели возможность подготовиться и проработать соответствующие теоретические вопросы дисциплины. В начале каждого практического занятия преподаватель кратко доводит до обучающихся цели и задачи занятия, обращая их внимание на наиболее сложные вопросы по изучаемой теме. Назначение практических занятий – закрепление, углубление и комплексное применение на практике теоретических знаний, выработка умений и навыков обучающихся в решении практических задач. Вместе с тем, на этих занятиях, осуществляется активное формирование и развитие навыков и качеств, необходимых для последующей профессиональной деятельности. Практические занятия проводятся по наиболее сложным вопросам дисциплины и имеют целью углубленно изучить ее содержание, привить обучающимся навыки самостоятельного поиска и анализа информации, умение делать обоснованные выводы, аргументировано излагать и отстаивать свое мнение. Каждое практическое занятие заканчивается, как правило, кратким подведением итогов, указаниями преподавателя о последующей самостоятельной работе.

В современных условиях перед студентом стоит важная задача – научиться

работать с массивами информации. Обучающимся необходимо развивать в себе способность и потребность использовать доступные информационные возможности и ресурсы для поиска нового знания и его распространения. Для достижения этой цели, в вузе организуется самостоятельная работа обучающихся. Кроме того, современное обучение предполагает, что существенную часть времени в освоении учебной дисциплины обучающийся проводит самостоятельно.

Систематичность занятий предполагает равномерное распределение объема работы в течение всего предусмотренного учебным планом срока овладения дисциплиной «Системы искусственного интеллекта в гражданской авиации». Последовательность работы означает преемственность и логику в овладении знаниями по дисциплине «Системы искусственного интеллекта в гражданской авиации». Данный принцип изначально заложен в учебном плане при определении очередности изучения дисциплин. Аналогичный подход применяется при определении последовательности в изучении тем дисциплины.

Завершающим этапом самостоятельной работы является подготовка к сдаче экзамена по дисциплине, предполагающая интеграцию и систематизацию всех полученных при изучении учебной дисциплины знаний.

Экзамен (промежуточная аттестация по итогам освоения дисциплины «Системы искусственного интеллекта в гражданской авиации») позволяет определить уровень освоения обучающимся компетенций (п. 9.5) за период изучения данной дисциплины. Экзамен предполагает устный ответ на 2 теоретических вопроса из перечня вопросов, вынесенных на промежуточную аттестацию, а также решение ситуационной задачи (п. 9.6).

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.04 «Прикладная математика».

Программа рассмотрена и утверждена на заседании кафедры №8 «Прикладная математика и информатика»

| K.T.H.                                                      | My                                          | Ю.В.Земсков             |
|-------------------------------------------------------------|---------------------------------------------|-------------------------|
|                                                             | вя степень, ученов'явание, фамилия и иницио |                         |
| И.о.заведующего кафе                                        | едрои № 8 «Прикладнои М                     | математики и информатик |
| K.T.H.                                                      | пепень, ученое жание, фамилия и инициалы    | Ю.В.Земсков             |
| Программа согласован                                        | на:                                         |                         |
| Программа согласован<br>Руководитель ОПОП<br>д.т.н., доцент | на:                                         | Г.А.Костин              |