

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ИМЕНИ ГЛАВНОГО МАРШАЛА АВИАЦИИ А.А. НОВИКОВА»

УТВЕРЖДАЮ

/ Ю.Ю. Михальчевский

«<u>23</u>» <u>колоря</u> в 2023 года

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Бортовые информационно-управляющие системы

Направление подготовки **25.03.01 Техническая эксплуатация летательных аппаратов и двигателей**

Профиль **Поддержание летной годности**

Квалификация выпускника **бакалавр**

Форма обучения **заочная**

Санкт-Петербург 2023

1 Цели освоения дисциплины

Целью освоения дисциплины «Бортовые информационно-управляющие системы» (БИУС) является формирование знаний основ теории БИУС и умений их применения в последующей профессиональной деятельности.

Задачами освоения дисциплины являются изучение назначения и типовых структур БИУС, принципов функционирования элементов и подсистем БИУС, конструкции и принципов функционирования и их эксплуатационнотехнических характеристик.

Дисциплина обеспечивает подготовку выпускника к эксплуатационнотехнологическому и организационно-управленческому видам профессиональной деятельности.

2 Место дисциплины в структуре ОПОП ВО

Дисциплина «Бортовые информационно-управляющие системы» относится к Элективным дисциплинам Части, формируемой участниками образовательных отношений Обязательной части Блока 1. Дисциплины (модули).

Дисциплина «Бортовые информационно-управляющие системы» базируется на результатах обучения, полученных при изучении дисциплин: «Высшая математика», «Физика», «Электротехника и электроника» и «Информатика».

Дисциплина «Бортовые информационно-управляющие системы» является обеспечивающей для «Производственная практика (эксплуатационная практика)».

Дисциплина изучается в 7 семестре.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс освоения дисциплины «Бортовые информационно-управляющие системы» направлен на формирование следующих компетенций:

Код компетенции	Результат обучения: наименование
/индикатора	компетенции, индикатора компетенции
ПК-1	Способен к организации и проведению процедуры
	технического обслуживания воздушных судов на всех
	этапах технической эксплуатации
ИД ¹ _{ПК1}	Анализирует конструкторско-технологическую докумен-
	тацию производителя на определенный вид воздушного
	судна, агрегата, детали при организации и выполнении
	работ по техническому обслуживанию и текущему ремон-
	ту
ИД ² _{ПК1}	Применяет конструкторско-технологическую документа-
	цию производителя на определенный вид воздушного
	судна, агрегата, детали при организации и выполнении
	работ по техническому обслуживанию и текущему ремон-
	ту

Код компетенции	Результат обучения: наименование			
/индикатора	компетенции, индикатора компетенции			
ИД ³ _{ПК1}	Осуществляет контроль правильности применения			
	средств технического обслуживания и ремонта при про-			
	ведении работ на авиационной технике			

Планируемые результаты изучения дисциплины:

Знать:

- теоретические основы, конструкцию и принцип работы бортовых информационно-управляющих систем;
- основные эксплуатационно-технические характеристики бортовых информационно-управляющих систем.

Уметь:

- использовать теоретические основы и знания функционирования бортовых информационно-управляющих систем в своей профессиональной деятельности;
- использовать знания основных эксплуатационно-технических характеристик бортовых информационно-управляющих систем в своей профессиональной деятельности.

Владеть:

- основами эксплуатации бортовых информационно-управляющих систем в своей профессиональной деятельности;
- методами и процедурами технического обслуживания бортовых информационно-управляющих систем.

4 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 академических часа.

Наименование		Семестр
		7
Общая трудоемкость дисциплины	144	144
Контактная работа:	8,5	8,5
лекции	2	2
практические занятия	4	4
семинары	-	-
лабораторные работы	-	-
курсовой проект (работа)	-	-
Самостоятельная работа студента	129	129
Промежуточная аттестация	9	9
контактная работа	2,5	2,5

Самостоятельная работа по подготовке к экзамену	6,5	6,5
---	-----	-----

5. Содержание дисциплины

5.1 Соотнесения тем (разделов) дисциплины и формируемых компетенций

Темы дисциплины		Ком- петен- ции ПК-1	Образовательные технологии	Оценочные средства
Раздел 1. Принципы построения БИУС	10,6	+		
Назначение, структура и перспективы развития БИУС		+	ВК, Л, ПЗ, ИЛ, IT, СРС	У
Раздел 2. Методы и средства определе-	26,6	+		
ния высотно-скоростных параметров				
полета				
Методы и средства измерения/вычисления высоты полета Методы и средства измерения/вычисления скорости полета и числа М		+	Л, ИЛ ПЗ, IT, CPC	У
Раздел 3. Методы и средства определе-	29,2	+		
ния пространственного и географического положения ВС				
Методы и средства определения про- странственного положения ВС Методы и средства определения геогра- фического положения ВС		+	Л, ИЛ, ПЗ, IT, CPC	У
Раздел 4. Инерциальные системы	33,8	+		
Методы и средства вычисления местопо- ложения BC		+	Л, ИЛ, ПЗ, IT, CPC	У
Раздел 5. Автоматизация процессов	34,8	+		
управления полетом				
Принципы автоматизации процессов управления ВС. Режимы управления. Автопилоты. Системы автоматизированного управления полетом (САУП).		+	Л, ИЛ, ПЗ, IT, CPC	У
Итого по дисциплине	135			
Промежуточная аттестация	9			
Всего по дисциплине	144			

Сокращения: ВК – входной контроль; ІТ – интерактивные ІТ методы; Π – лекция; Π – интерактивные лекции; Π – лабораторная работа; Π – самостоятельная работа студента; Π – устный опрос.

5.2 Темы (разделы) дисциплины и виды занятий

Наименование темы дисциплины		ПЗ	ЛР	CPC	Всего часов
Раздел 1. Принципы построения БИУС	0,2	0,4	-	10	10,6
Раздел 2. Методы и средства определения	0,2	0,4	-	26	26,6
высотно-скоростных параметров полета					
Раздел 3. Методы и средства определения	0,4	0,8	-	28	29,2
пространственного и географического по-					
ложения ВС					
Раздел 4. Инерциальные системы	0,6	1,2	-	32	33,8
Раздел 5. Автоматизация процессов управ-		1,2	-	33	34,8
ления полетом					
Итого по дисциплине		4	-	129	135
Промежуточная аттестация					9
Всего по дисциплине					144

Сокращения: Π – лекция, Π 3 – практическое занятие, Π 7 – лабораторная работа, Π 8 – самостоятельная работа студента.

5.3 Содержание дисциплины

Раздел 1. Принципы построения БИУС

Назначение, структура и перспективы развития БИУС

Понятие об информационно – управляющих системах (ИУС) и их структуре. БИУС и их типовые структуры. Применение бортовых экспертных систем.

Раздел 2. Методы и средства определения высотно-скоростных параметров полета

Методы и средства измерения/вычисления высоты полета.

Определения высот полета. Виды методов измерения/вычисления высот полета. Основы теории барометрического метода измерения высоты. Барометрические высотомеры. Погрешности барометрических высотомеров.

Методы и средства измерения/вычисления скорости полета и числа М.

Определения скоростей полета. Теоретические основы аэрометрического, допплеровского и инерциального методов измерения скоростей полета. Указатели скоростей и числа М. Погрешности указателей скорости.

Раздел 3. Методы и средства определения пространственного и географического положения ВС

Методы и средства определения пространственного положения ВС.

Построение вертикали места путем использования физического маятника и классического гироскопа.

Схема гироскопа с тремя степенями свободы. Основные свойства гироскопа и определяющие их причины. Движение гироскопа под действием постоянно действующих моментов и мгновенного импульса силы. Схема авиагоризонта с маятниковой коррекцией. Погрешности авиагоризонта.

Методы и средства определения географического положения ВС

Использование земного магнетизма.

Основные сведения о земном магнетизме. Магнитный компас и его погрешности. Магнитный индукционный датчик.

Методы и средства определения ортодромического курса.

Определение ортодромии. Составляющие суточного вращения Земли. Средства определения ортодромического курса.

Раздел 4. Инерциальные системы

Методы и средства вычисления местоположения ВС

Методы счисления пути ВС. Назначение и принцип работы инерциальных систем навигации. Состав и типы инерциальных систем. Принцип работы инерциальной системы полуаналитического типа. Бесплатформенные инерциальные системы.

Раздел 5. Автоматизированные системы управления полетом

Принципы автоматизации процессов управления BC. Режимы управления. Автопилоты.

Уровни автоматизации процессов управления ВС. Структура пилотажно-навигационных комплексов.

Законы управления, применяемые в автопилотах. Задачи управления, решаемые автопилотами. Принцип построения автопилота.

Системы автоматизированного управления полетом (САУП).

Назначение и функциональные возможности САУП. Структура САУП. Законы управления, применяемые в САУП. Перспективы развития САУП.

5.4 Практические занятия (семинары)

Номер темы дисциплины	Тематика практических занятий	Трудоем- кость (часы)
1	Практическое занятие №1. Понятие об информационно – управляющих системах (ИУС) и их структуре. БИУС и их типовые структуры. Применение бортовых экспертных систем.	0,4
2	Практическое занятие №1. Определения высот полета. Виды методов измерения/вычисления высот полета. Основы теории барометрического метода измерения высоты. Барометрические высотомеры. Погрешности барометрических высотомеров. Определения скоростей полета. Теоретические	0,4

Номер темы дисциплины	Тематика практических занятий	Трудоем- кость (часы)
	основы аэрометрического, допплеровского и инерциального методов измерения скоростей полета. Указатели скоростей и числа М. Погрешности указателей скорости.	
3	Практическое занятие №1. Построение вертикали места путем использования физического маятника и классического гироскопа. Схема гироскопа с тремя степенями свободы. Основные свойства гироскопа и определяющие их причины. Движение гироскопа под действием постоянно действующих моментов и мгновенного импульса силы. Схема авиагоризонта с маятниковой коррекцией. Погрешности авиагоризонта. Использование земного магнетизма. Основные сведения о земном магнетизме. Магнитный компас и его погрешности. Магнитный индукционный датчик. Методы и средства определения ортодромического курса. Определение ортодромии. Составляющие суточного вращения Земли. Средства определения ортодромического курса.	0,8
4	Практическое занятие №1. Методы счисления пути ВС. Назначение и принцип работы инерциальных систем навигации.	0,4
4	Практическое занятие №2. Состав и типы инерциальных систем. Принцип работы инерциальной системы полуаналитического типа. Бесплатформенные инерциальные системы.	0,8
5	Практическое занятие №2. Уровни автоматизации процессов управления ВС. Структура пилотажно-навигационных комплексов. Законы управления, применяемые в автопилотах. Задачи управления, решаемые автопилотами. Принцип построения автопилота. Назначение и функциональные возможности САУП. Структура САУП. Законы управления, применяемые в САУП. Перспективы развития САУП.	1,2
Итого за семес	стр	4
Итого по дисц	иплине	4

5.5 Лабораторный практикум

Лабораторный практикум учебным планом не предусмотрены.

5.6 Самостоятельная работа

Номер темы дисциплины	Виды самостоятельной работы	Трудо- емкость (часы)	
1	Самостоятельное изучение материала, определен-	10	
	ного преподавателем, повторение материала и под-		
	готовка к текущему контролю и устному опросу по		
	разделу дисциплины [1-10].		
2	Самостоятельное изучение материала, определен-	26	
	ного преподавателем, повторение материала и под-		
	готовка к текущему контролю и устному опросу по		
	разделу дисциплины [1-10].		
3	Самостоятельное изучение материала, определен-	28	
	ного преподавателем, повторение материала и под-		
	готовка к текущему контролю и устному опросу по		
	разделу дисциплины [1-10].		
4	Самостоятельное изучение материала, определен-	32	
	ного преподавателем, повторение материала и под-		
	готовка к текущему контролю и устному опросу по		
	разделу дисциплины [1-10].		
5	Самостоятельное изучение материала, определен-	33	
	ного преподавателем, повторение материала и под-		
	готовка к текущему контролю и устному опросу по		
	разделу дисциплины [1-10].		
Итого за семестр		129	
Итого по диси	Итого по дисциплине		

5.7 Курсовые работы

Курсовые работы (проекты) учебным планом не предусмотрены.

6 Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

- 1. Горев, А.Э. **Теория транспортных процессов и систем**: [Текст] учебник для вузов. Издательство «Юрайт», 2018 182 с. . ISBN 978-5-534-08599-0, [Электронный ресурс].
- 2. Грибков, А.Н. **Информационно-управляющие системы многомерны-ми технологическими объектами: теория и практика: монография** // А.Н. Грибков, Д.Ю. Муровцев. Тамбов: Издательство ФГБОУ ВО «ТГТУ», 2016, 164 с. ISBN 978-5-8265-1566-2, [Электронный ресурс].

б) дополнительная литература:

- 3. Федоров, С.М., Михайлов О.И., Сухих Н.Н. **Бортовые информационно-управляющие системы**: [Текст] учебник для вузов / ред. С.М. Федорова. Москва: Издательство «Транспорт», 1994 - 262с. - Количество экземпляров — 217. ISBN отсутствует
- 4. Бочкарев, Б.В., Крыжановский Г.А., Сухих Н.Н. **Автоматизированное управление движением авиационного транспорта** / [Текст] ред. Г.А. Крыжановского Москва: Издательство «Транспорт», 1999 319с. Количество экземпляров 219. ISBN отсутствует
- 5. Михайлов, О.И., Козлов И.М., Гергель Ф.С. **Авиационные приборы:** учебник для вузов [Текст] / Москва: Издательство «Машиностроение», 1977. 415с. Количество экземпляров 261. ISBN отсутствует
- в) перечень ресурсов информационно-телекоммуникационной сети «Интернет»:
- 6. **Административно-управленческий портал** [Электронный ресурс] режим доступа: URL: <u>Бизнес-портал AUP.Ru</u>. Свободный (дата обращения сентябрь 2023).
- 7. ОК 010-2014 (МСКЗ-08). **Общероссийский классификатор занятий.** Принят и введён в действие Приказом Росстандарта от 12.12.2014 № 2020-ст [Электронный ресурс] Режим доступа: 1 июля 2015 года вводится в действие новый Общероссийский классификатор занятий ОК 010-2014 (МСКЗ-08) \ КонсультантПлюс (consultant.ru) свободный (дата обращения сентябрь 2023).
- г) программное обеспечение (лицензионное), базы данных, информационно-справочные и поисковые системы:
- 8. Электронная библиотека научных публикаций «eLIBRARY.RU» [Электронный ресурс] Режим доступа: URL: <u>eLIBRARY.RU НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА</u>, свободный (дата обращения: сентябрь 2023).
- 9. Электронно-библиотечная система издательства «Лань» [Электронный ресурс] Режим доступа: URL: <u>ЭБС Лань (lanbook.com)</u>, свободный (дата обращения: сентябрь 2023).
- 10. **Консультант-Плюс.** Официальный сайт компании [Электронный ресурс] Режим доступа: URL: <u>"КонсультантПлюс" законодательство РФ: кодексы, законы, указы, постановления Правительства Российской Федерации, нормативные акты (consultant.ru)</u>, свободный (дата обращения: сентябрь 2023).

7 Материально-техническое обеспечение дисциплины

		TT		
		Наимено-		
		вание спе-		Перечень лицензи-
	Наименование	циальных*		онного программ-
No	дисциплины	помещений	Оснащенность специальных по-	ного обеспечения.
п\	(модуля), прак-	и помеще-	мещений и помещений для само-	Реквизиты под-
П	тик в соответст-	ний для	стоятельной работы	
	вии с УП	самостоя-		тверждающего до-
		тельной		кумента
		работы		
1	Бортовые ин-	Ауд. 109	Лабораторные стенды по исследо-	
	формационно-	«Лаборато-	ванию пилотажно-навигационных	
	управляющие	рия авиа-	приборов и курсовых систем	
	системы	ционных		
		приборов и		
		измери-		
		тельных		
		систем»		
2	Бортовые ин-	Ауд. 112	Лабораторные стенды по исследо-	
	формационно-	1. «Лабора-	ванию систем автоматизированно-	
	управляющие	тория бор-	го управления:	
	системы	товых	1. Характеристики элементов сис-	
		САУ»	темы «Путь-4МПА»;	
		2. «Авто-	2. Система траекторного управле-	
		матизиро-	ния СТУ-154;	
		ванные	3. Динамика системы траекторного	
		системы	управления СТУ-154.	
		управле-		
		ния»		
3	Бортовые ин-	Ауд. 113	ПЭВМ IntelPentium 4 CPU 3.006	MicrosoftWindowsSe
	формационно-	«Автомати-	Нz 3.01 ГГц, 512 МБ ОЗУ - 20 шт.	rver 2008. (Лицензия
	управляющие	зированные	Лабораторные работы по исследо-	№ 46231032 от 04
	системы	системы	ванию и решению задач автомати-	декабря 2009 г. 1
		управле-	зированных систем управления на	шт.)
		ния»	базе MicrosoftWindowsOffice 2003	MicrosoftWindowsX
			Suites.	PProf, x64 Ed. (ли-
				цензия № 43471843
				от 07 февраля 2008
				г. 19 шт.)
				Microsoft Windows
				Office 2003 Suites.
				(Лицензия
				№ 43471843 от 07
				февраля 2008 г. 20
				шт.)
		<u> </u>		ш1.)

№ п\ п	Наименование дисциплины (модуля), прак- тик в соответст- вии с УП	Наименование специальных* помещений и помещений для самостоятельной работы	Оснащенность специальных по- мещений и помещений для само- стоятельной работы	Перечень лицензи- онного программ- ного обеспечения. Реквизиты под- тверждающего до- кумента
4	Бортовые информационно- управляющие системы	Ауд. 119 1. «Лаборатория элементов систем управления» 2. «Автоматизированные системы управления»	Лабораторные стенды по исследованию элементов систем управления: 1. Потенциометрические датчики и функциональные преобразователи; 2. Электромеханический интегратор и синусно-косинусный потенциометр; 3. Исследование системы автоматического регулирования второго порядка.	

8 Образовательные и информационные технологии

Реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий на основе современных информационных и образовательных технологий, что, в сочетании с внеаудиторной работой, приводит к формированию и развитию профессиональных компетенций обучающихся. Это позволяет учитывать, как исходный уровень знаний студентов, так и существующие методические, организационные и технические возможности обучения.

В процессе преподавания дисциплины «Бортовые информационноуправляющие системы» используются классические формы и IT-методы обучения: лекции, интерактивные лекции, практические занятия (дискуссии, устные опросы), самостоятельная работа студента.

В рамках изучения дисциплины предполагается использовать следующие образовательные технологии.

Входной контроль проводится в форме устных опросов с целью оценивания остаточных знаний по ранее изученным дисциплинам или разделам изучаемой дисциплины.

При изучении дисциплины проводится лекции, в том числе интерактивные.

Лекция как образовательная технология представляет собой устное систематическое и последовательное изложение преподавателем учебного материала с целью организации целенаправленной познавательной деятельности студентов по овладению знаниями, умениями и навыками читаемой дисциплины. В лекции делается акцент на реализацию главных идей и направлений в изучении дисциплины, дается установка на последующую самостоятельную работу.

Ведущим методом в лекции выступает устное изложение учебного материала, с использованием IT - технологий, которое сопровождается одновременной демонстрацией слайдов, созданных в среде PowerPoint, при необходимости привлекаются открытые Интернет-ресурсы, а также демонстрационные и наглядно-иллюстрационные материалы.

Интерактивные лекции проводятся в нескольких вариантах:

- проблемная лекция начинается с постановки проблемы, которую, необходимо решить в процессе изложения материала.
- лекция-визуализация учит студентов преобразовывать устную и письменную информацию в визуальную форму, что формирует у них профессиональное мышление за счет систематизации и выделения наиболее значимых, существенных элементов содержания обучения.
- лекция-беседа предполагает непосредственный контакт преподавателя с аудиторией, позволяет привлечь внимание студентов к наиболее важным вопросам темы, вовлечь в двусторонний обмен мнениями, выяснить уровень их осведомленности по рассматриваемой теме, степени их готовности к восприятию последующего материала, позволяет адресовать вопрос к конкретному студенту, спросить его мнение по обсуждаемой проблеме.
- лекция-дискуссия. Преподаватель при изложении лекционного материала не только использует ответы студентов на свои вопросы, но и организует свободный обмен мнениями в интервалах между логическими разделами.

Практические занятия, как метод репродуктивного обучения, обеспечивающий связь теории и практики, содействующий выработке у студентов умений и навыков применения знаний, полученных на лекции и в ходе самостоятельной работы, предназначены для закрепления полученных знаний, а также выработки необходимых умений и навыков. Проводятся с использованием мультимедийных средств и специализированных исследовательских стендов.

Самостоятельная работа студента проводится с целью закрепления и совершенствования осваиваемых компетенций, предполагает сочетание самостоятельных теоретических занятий и подготовке к контрольному опросу с использованием рекомендованной литературы [1-10].

Самостоятельная работа студента проявляется в систематизации, планировании, контроле и регулировании его учебно-профессиональной деятельности, а также собственных познавательно-мыслительных действий без непосредственной помощи и руководства со стороны преподавателя. Основной целью самостоятельной работы студента является формирование навыка самостоятельного приобретения им знаний по некоторым несложным вопросам теоретического курса, закрепление и углубление полученных знаний, умений и навыков во время лекций и практических занятий. Самостоятельная работа подразумевает выполнение студентом поиска, анализа информации, проработку на этой основе учебного материала, подготовку к контрольному опросу, а также подготовку докладов в рамках НИРС.

9 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Оценочными средствами являются:

Устный опрос – для оценки уровня освоения разделов дисциплины (проводятся на практических занятиях);

Экзамен – для итоговой оценки освоения компетенций, приобретаемых во время изучения дисциплины, проводится по окончании изучения дисциплины в 7-ом семестре.

9.1 Балльно-рейтинговая оценка текущего контроля успеваемости и знаний студентов

Не применяется.

9.2 Методические рекомендации по проведению процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций, предусматривает контрольные опросы для оценки уровня освоения разделов дисциплины и промежуточную аттестацию по итогам освоения дисциплины. При этом фонд оценочных средств включает следующие оценочные средства и шкалы оценивания.

Оценочные средства	Шкалы оценивания*				
	Текущий контроль успеваемости обучающихся				
Устный опрос	«Зачтено»: обучающийся дает ответ на поставленный вопрос по существу и правильно отвечает на уточняющие вопросы. «Не зачтено»: обучающийся отказывается отвечать на поставленный вопрос, либо отвечает на него неверно и при формулировании дополнительных (вспомогательных) вопросов.				
	Промежуточная аттестация по итогам освоения дисциплины				
Экзамен	«Отлично»: обучающийся четко и ясно, по существу дает ответы на вопросы экзаменационного билета; правильно и подробно отвечает на дополнительные вопросы. «Хорошо»: обучающийся дает ответы на поставленные вопросы в экзаменационном билете по существу и правильно, но не полно и не подробно отвечает на уточняющие вопросы. «Удовлетворительно»: обучающийся не сразу либо с ошибками даёт ответы на экзаменационные вопросы, либо даёт правильные ответы только при помощи наводящих вопросов. «Неудовлетворительно»: обучающийся отказывается отвечать на поставленные в экзаменационном билете вопросы, либо отвечает на них неверно, в том числе при формулировании преподавателем дополнительных (вспомогательных) вопросов.				

*Результирующая оценка (по «академической» шкале) по итогам текущего контроля успеваемости обучающихся определяется в результате округления в большую сторону средней оценки всех показателей оценивания каждого оценочного средства. Методика формирования результирующей оценки в обязательном порядке учитывает также посещаемость занятий обучающимся, его активность в образовательной и научной деятельности. Результи-

рующая оценка по итогам текущего контроля успеваемости обучающихся учитывается во время промежуточной аттестации по итогам освоения дисциплины.

9.3 Темы курсовых работ (проектов) по дисциплине

Написание курсовых работ (проектов) учебным планом не предусмотрено.

9.4 Контрольные вопросы для проведения входного контроля остаточных знаний по обеспечивающим дисциплинам

Высшая математика:

Порядок составления и решения системы уравнений.

Понятие о дифференциальном уравнении.

Определение производной функции.

Понятие об интеграле.

Информатика:

Общие сведения о процессорах и ЭВМ.

Понятие о двоичной системе счисления и её использовании в ЭВМ.

Понятие об информационных технологиях.

Физика:

Электромагнитная индукция - сущность, основные понятия.

Электропроводимость – сущность, основные понятия.

Электрическое сопротивление – понятие, формула определения.

Емкость - понятие, формула определения.

Индуктивность - понятие, формула определения.

Электротехника и электроника:

Закон Ома для участка цепи;

Первый закон Кирхгофа;

Второй закон Кирхгофа;

Принцип действия электронного усилителя.

9.5 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Показатели и критерии оценивания компетенций на различных этапах их формирования

	ΨΟΙ	•
Компетенции	Показатели оцени- вания (индикаторы достижения) компе- тенций	Критерии оценивания
		I этап
ПК-1 Способен к организации и проведению процедуры технического обслуживания воздушных судов на всех этапах технической эксплуатации	ИД _{ПК1} Демонстрирует знание и понимание назначения, состава и характеристик навигационной инфраструктуры ИД _{ПК1} Применяет конструкторскотехнологическую документацию производителя на определенный вид воздушного судна, агрегата, детали при организации и выполнении работ по техническому обслуживанию и текущему ремонту	Знает: - теоретические основы, конструкцию и принцип работы бортовых информационно-управляющих систем; - основные эксплуатационно-технические характеристики бортовых информационно-управляющих систем. Умеет: - использовать теоретические основы и знания функционирования бортовых информационно-управляющих систем в своей профессиональной деятельности.
		ІІ этап
ПК-1 Способен к организации и проведению процедуры технического обслуживания воздушных судов на всех этапах технической эксплуатации	ИД _{ПК1} Применяет конструкторскотехнологическую документацию производителя на определенный вид воздушного судна, агрегата, детали при организации и выполнении работ по техническому обслуживанию и текущему ремонту ИД _{ПК1} Осуществляет контроль правильности применения средств технического обслуживания	Умеет: - использовать знания основных эксплуатационно-технических характеристик бортовых информационно-управляющих систем в своей профессиональной деятельности. Владеет: - основами эксплуатации бортовых информационно-управляющих систем в своей профессиональной деятельности; - методами и процедурами технического обслуживания бортовых информационно-управляющих систем.

	Показатели оцени-	
Компетенции	вания (индикаторы	Критерии оценивания
	достижения) компе-	
	тенций	
	ния и ремонта при	
	проведении работ на	
	авиационной техни-	
	ке	

Описание шкалы оценивания

Оценку «отлично» заслуживает студент, обнаруживший всестороннее, систематическое знание учебного программного материала, самостоятельно выполнивший все предусмотренные программой задания, глубоко усвоивший основную литературу и знакомый с дополнительной литературой, рекомендованной программой, активно работавший на практических занятиях, показавший систематический характер знаний по дисциплине, достаточный для дальнейшей учёбы, а также способность к их самостоятельному пополнению, ответ отличается точностью использованных терминов, материал излагается последовательно и логично.

Оценку «**хорошо**» заслуживает студент, обнаруживший полное знание учебного и программного материала, не допускающий в ответе существенных неточностей, самостоятельно выполнивший все предусмотренные программой задания, усвоивший основную литературу, рекомендованную программой, активно работавший на практических занятиях, показавший систематический характер знаний по дисциплине, достаточный для дальнейшей учебы, а также способность к их самостоятельному пополнению.

Оценку «удовлетворительно» заслуживает студент, обнаруживший знание основного учебно-программного материала в объёме, необходимом для дальнейшей учебы и предстоящей работы по профессии, не отличавшийся активностью на практических занятиях, самостоятельно выполнивший основные предусмотренные программой задания, усвоивший основную литературу, рекомендованную программой, однако допустивший некоторые погрешности при их выполнении и в ответе на экзамене, но обладающий необходимыми знаниями для их самостоятельного устранения.

Оценка «неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях или отсутствие знаний по значительной части основного учебно-программного материала, не выполнившему самостоятельно предусмотренные программой основные задания, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий, не отработавшему основные практические занятия, допустившему существенные ошибки при ответе, и который не может продолжить обучение или приступить к профессиональной деятельности без дополнительных занятий по соответствующей дисциплине.

9.6 Типовые контрольные задания для проведения текущего контроля и промежуточной аттестации по итогам обучения по дисциплине

Примерный перечень контрольных вопросов для подготовки к текущему контролю успеваемости и оценке освоения дисциплины – экзамену

- 1. Методы и средства вычисления и контроля высотно-скоростных параметров полета (указатели: высоты полета, индикаторной, истинной воздушной и вертикальной скоростей полета, числа М; средства восприятия и система воздушных давлений, информационный комплекс высотно-скоростных параметров (система воздушных сигналов). Определения, математические зависимости, положенные в основу работы, принципы построения, принципиальные схемы, работа, существующие погрешности и способы их компенсации.
- 2. Методы и средства определения пространственного положения самолета относительно плоскости горизонта. Основные сведения из теории, принципы определения, конструкция, работа, индикация, ошибки.
- 3. Средства определения скольжения ВС. Назначение, устройство, принцип действия, схема сил при вираже с внутренним (внешним) скольжением.
- 4. Устройства измерения угловых скоростей самолета. Основные сведения из теории, принципы определения, конструкция, работа, индикация.
- 5. Методы и средства определения географического положения воздушного судна. Методы измерения, основные сведения из теории, конструкция, работа, индикация, погрешности и методы их компенсации.
- 6. Инерциальные системы. Типы и структурные схемы, принцип работы, вычисляемые параметры, режимы.
- 7. Датчики информации инерциальных систем. Устройства, принципиальные схемы, работа, погрешности.
- 8. Инерциальные навигационные системы. Назначение, устройство и работа.
- 9. Средства сбора полетной информации. Назначение, виды средств регистрации, принцип действия и записи параметров, перечень регистрируемых параметров.
- 10. Автоматизация процессов управления. Основные задачи. Принципиальная схема системы управления. Уровни автоматизации. Системы стабилизации. Формирование законов управления, принцип действия автопилота. Структура БИУС. Пилотажно-навигационные комплексы ВС. Автоматизация процессов управления полетом.

10 Методические рекомендации для обучающихся по освоению дисциплины

При проведении всех видов занятий основное внимание уделять рассмотрению конструкции бортовых информационно-управляющих систем, принципов работы, анализу точности вычисляемых параметров, эксплуатации.

Теоретическая подготовка студентов по дисциплине обеспечивается на лекциях. На лекциях обучаемым даются систематизированные основы научных

знаний по состоянию и основным научно-техническим проблемам развития пилотажно-навигационных систем. Теоретические положения, излагаемые в лекциях, должны иллюстрироваться примерами их практической реализации в бортовых информационно-управляющих системах.

Кроме традиционных лекций используются интерактивные лекции и проводятся в нескольких вариантах:

- проблемная лекция начинается с постановки проблемы, которую, необходимо решить в процессе изложения материала.
- лекция-визуализация учит студентов преобразовывать устную и письменную информацию в визуальную форму, что формирует у них профессиональное мышление за счет систематизации и выделения наиболее значимых, существенных элементов содержания обучения.
- лекция-беседа предполагает непосредственный контакт преподавателя с аудиторией, позволяет привлечь внимание студентов к наиболее важным вопросам темы, вовлечь в двусторонний обмен мнениями, выяснить уровень их осведомленности по рассматриваемой теме, степени их готовности к восприятию последующего материала, позволяет адресовать вопрос к конкретному студенту, спросить его мнение по обсуждаемой проблеме.
- лекция-дискуссия. Преподаватель при изложении лекционного материала не только использует ответы студентов на свои вопросы, но и организует свободный обмен мнениями в интервалах между логическими разделами.

Для облегчения восприятия студентом сложного и разнообразного материала рекомендуется изучение новых разделов курса начинать с краткого введения, в котором устанавливается связь с предыдущими и смежными дисциплинами учебного плана, охарактеризовать используемый математический аппарат и рекомендовать конкретную учебную литературу. На самостоятельную работу студента выносятся наиболее простые в изучении темы разделов дисциплины, поиск необходимого дополнительного для изучения материала, подготовка к контрольному опросу. Самостоятельное изучение позволяет привить навык самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления.

Проведение практических занятий осуществляется после прочтения на лекциях соответствующего теоретического материала, и служит средством закрепления полученных знаний и формирования навыков и умений.

Практические занятия призваны обеспечить получение студентами практических навыков и умений по основам летной эксплуатации бортовых информационно-управляющих систем.

Лабораторные работы призваны обеспечить выработку практических навыков использования теоретического материала, полученного на лекционных и практических занятиях. Лабораторные работы выполняются на специализированных стендах и носят исследовательский характер.

Все виды учебных занятий проводятся с активным использованием технических средств обучения и специализированных исследовательских стендов.

Изучение дисциплины построено таким образом, чтобы обеспечивалось наилучшее усвоение материала. Для активизации, индивидуализации и интенсификации изучения дисциплины в течение всего периода обучения предполагается проводить контрольные опросы с последующим выставлением оценки.

Промежуточный контроль знаний студентов по разделам и темам дисциплины в 7-ом семестре – в виде экзамена.

Допуском к экзамену являются положительные результаты устных опросов по темам дисциплины.

Преподаватель данной дисциплины имеет право на некоторые непринципиальные отступления от содержания программы в научных и педагогических целях.

Программа рассмотрена и утверждена на заседании кафедры №13 «Системы автоматизированного управления» «_3_» 2023 года, протокол №3
Разработчик:
(ученая степень, ученое звание, фамилия и инициалы разработчиков) Заведующий кафедрой Систем автоматизированного управления №13
к.т.н. Соколов О.А (ученая степень, ученое звание, факалия и инициалы заведующего кафедрой)
Программа согласована:
Руководитель ОПОП Заведующий кафедрой №24 ———————————————————————————————————
(ученая степень, ученое звание, фамилия и инициалы руководителя ОПОП)
Программа рассмотрена и согласована на заседании Учебнометодического совета Университета «

программа дисциплины составлена в соответствии с

требованиями ФГОС ВО по направлению подготовки 25.03.01 «Техническая

эксплуатация летательных аппаратов и двигателей».

Рабочая