

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА (РОСАВИАЦИЯ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Радиоэлектронные средства наблюдения

Специальность 25.05.05 Эксплуатация воздушных судов и организация воздушного движения

Специализация «Организация радиотехнического обеспечения полетов воздушных судов»

Квалификация выпускника инженер

Форма обучения **очная**

Санкт-Петербург 2021

1 Цели освоения дисциплины

Целями освоения дисциплины «Радиоэлектронные средства наблюдения» являются:

-дать студентам систематические знания о назначении, составе, основных характеристиках, принципах построения и функционирования средств наблюдения;

-дать студентам систематические знания о системе технического обслуживания и ремонта средств наблюдения;

-прививать студентам навыки инженерного мышления, основанного на знании назначения, состава, основных характеристиках, принципах построения и функционирования с целью понимания обоснования выбора состава и размещения средств наблюдения.

Задачами освоения дисциплины являются:

- формирование у обучающихся систематических знаний о назначении, составе, основных характеристиках, принципах построения и функционирования, системе технического обслуживания и ремонта средств наблюдения;
- формирование способности осуществлять выбор состава и размещения средств наблюдения.

Дисциплина обеспечивает подготовку выпускника к решению задач профессиональной деятельности эксплуатационно-технологического типа.

2 Место дисциплины в структуре ОПОП ВО

Дисциплина «Радиоэлектронные средства наблюдения» представляет собой дисциплину, относящуюся к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)», относится к специальным дисциплинам и требует от студентов знаний, умений и навыков по дисциплинам математического и естественнонаучного характера, а также в области теории цепей и сигналов, общей теории РЭС в объеме, определяемом соответствующими программами. Вопросы применения радиоэлектронных систем для целей навигации, посадки, связи и управления воздушным движением и конкретные типы этих систем изучаются в соответствующих специальных дисциплинах на последующих курсах.

Дисциплина «Радиоэлектронные средства наблюдения» базируется на результатах обучения, полученных при изучении дисциплин: «Введение в специальность», «Учебная практика», «Производственная (эксплуатационнотехнологическая) практика» (4 семестр, 6 семестр), «Электромагнитная совместимость РЭС», «Инженерно-техническое оборудование аэродромов.

Дисциплина «Радиоэлектронные средства наблюдения» является обеспечивающей для дисциплин: «Организация радиотехнического обеспечения полетов и авиационной электросвязи», «Производственная (эксплуатационно-технологическая) практика» (8 семестр), а также для

подготовки к сдаче и сдаче государственного экзамена и подготовке к процедуре защиты и защиты выпускной квалификационной работы.

Дисциплина «Радиоэлектронные средства наблюдения» изучается в 8 и 9 семестрах.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс освоения дисциплины направлен на формирование следующих компетенций:

_	
Перечень и код	Перечень планируемых результатов обучения по
компетенций	дисциплине
ПК-7	Способен осуществлять выбор состава и размещения
	инженерно-технических систем обеспечения полетов
	эксплуатации воздушных судов и организации воздушного
	движения
$ИД^1_{\Pi K7}$	Осуществляет выбор состава и размещения средств
	инженерно-технического обеспечения полетов при
	эксплуатации воздушных судов и ОрВД
$ИД^2_{\Pi K7}$	Обеспечивает выбор состава и размещения средств
, ,	инженерно-технического обеспечения полетов при
	эксплуатации ВС и ОрВД
$ИД^3_{\Pi K7}$	Применяет методы оптимизации состава и размещения
, , ,	средств инженерно-технического обеспечения полетов при
	эксплуатации ВС и ОрВД

Планируемые результаты изучения дисциплины:

Знать:

- назначение, состав, основные характеристики и принцип функционирования средств наблюдения, принципы построения и функционирования их устройств и систем по типам;
- систему технического обслуживания и ремонта средств наблюдения по типам;
- порядок размещения и требования к нему средств наблюдения на позиции. Уметь:
- анализировать сведения о средствах наблюдения с целью выбора их состава и размещения на позициях по типам.
- анализировать и рассчитывать характеристики, определяющие функциональное предназначение средств наблюдения по типам, с целью выбора их состава и размещения на позициях по типам;
- обосновать выбор средств наблюдения с целью размещения их на позициях по типам.

Владеть:

- навыками сравнительной оценки выбираемых средств наблюдения по типам;
- методами и приемами обоснования выбора и размещения средств наблюдения по типам;
- методами и приема оптимизации выбираемых средств наблюдения с целью выбора их состава и размещения на позициях по типам;

- навыками использования программного обеспечения специальных ЭВМ средств наблюдения, разработанных в контексте цифровой трансформации профессиональной деятельности.

4 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 10 зачетных единиц, 360 академических часов.

Наименование		Co	еместры
		8	9
Общая трудоемкость дисциплины	360	180	180
Контактная работа	208,8	108,3	100,5
лекции,	96	54	42
практические занятия,	106	54	52
семинары,			
лабораторные работы,			
курсовая работа	4	-	4
другие виды аудиторных занятий.			
Самостоятельная работа студента	109	63	46
Контрольные работы			
в том числе контактная работа			
Промежуточная аттестация	45	9	36
контактная работа	2,8	0,3	2,5
самостоятельная работа по подготовке к		8,7	33,5
(зачёту, экзамену)	42,2	Зачет	Экзамен

5 Содержание дисциплины

5.1 Соотнесения тем дисциплины и формируемых компетенций

Темы, разделы дисциплины	Количеств о часов	Комп етенц ии	Образовате льные техно- логии	Оценочн ые средства
Тема 1. Место и роль средств наблюдения в системе связи, навигации и наблюдения/ организации воздушного движения (CNS/ ATM)	10	*	ВК, ЛВ, ПЗ, СРС	У

Темы, разделы дисциплины	Количеств о часов	Комп етенц ии	Образовате льные техно- логии	Оценочн ые средства
Тема 2. Концепция развития средств наблюдения	10	*	ЛВ, ПЗ, СРС	У
Тема 3. Аэродромные обзорные радиолокаторы (ОРЛ-А) (по типам)	42	*	ЛВ, ПЗ, АКС,СРС	У, СЗ
Тема 4. Трассовый обзорный радиолокатор (ОРЛ-Т) (по типам)	46	*	ЛВ, ПЗ, АКС,СРС	У, СЗ
Тема 5. Радиолокационная станция обзора летного поля (РЛС ОЛП)	16	*	ЛВ, ПЗ, АКС,СРС	У, СЗ
Тема 6. Посадочные радиолокаторы	10		ЛВ, ПЗ, АКС,СРС	У, СЗ
Тема 7. Аппаратура первичной обработки радиолокационной информации (АПОИ)	37	*	ЛВ, ПЗ, АКС,СРС	У, СЗ
Промежуточная аттестация	9		Зачет	У
ИТОГО в 8 семестре	180			
Тема 8. Автоматические радиопеленгаторы (по типам)	22	*	ЛВ, ПЗ, АКС, СРС	У, СЗ
Тема 9. Вторичные радиолокаторы (по типам)	44	*	ЛВ, ПЗ, АКС,СРС	У, СЗ, РЗ
Тема 10. Автоматическое зависимое наблюдение (АЗН)	20	*	ЛВ, ПЗ, АКС,СРС	У, С3, Р3
Тема 11. Многопозиционная система наблюдения (МПСН)	22	*	ЛВ, ПЗ, АКС,СРС	У, С3, Р3
Тема 12. Оборудование видеонаблюдения	16	*	ЛВ, ПЗ, АКС,СРС	У, СЗ
Курсовая работа	20	*	CPC	ЗащКУР
Промежуточная аттестация	36		Экзамен	y
ИТОГО в 9 семестре	180			
Итого за дисциплину	360			

Сокращения: ЛВ – лекция - визуализация, ПЗ- практические занятия, СРС – самостоятельная работа студента, АКС – анализ конкретной ситуации, СЗ – ситуационная задача, РЗ – расчетная задача, ЗащКУР – защита курсовой работы, У – устный опрос.

5.2 Темы дисциплины и виды занятий

№ п/п	Наименов	ание разд	ела дисциплині	Ы	Л	ПЗ	ЛР	С	CPC	Всего часов
	Раздел 1.	Средства	наблюдения	В	8	4			8	20
	системе	связи,	навигации	И						

	наблюдения/организации воздушного				
1	движения (CNS/ATM) Тема 1. Место и роль средств				
1					
		4	2	4	10
	навигации и наблюдения/организации воздушного	4		4	10
	движения (CNS/ATM)				
2	Тема 2. Концепция развития средств	4			
	тема 2. Концепция развития средств наблюдения		2	4	10
	Раздел 2. Первичные обзорные	1.6	5 0		1.7.1
	радиолокаторы (ПОРЛ)	46	50	55	151
3	Тема 3. Аэродромные обзорные		10	2.4	40
	радиолокаторы (ОРЛ-А) (по типам)	6	12	24	42
4	Тема 4. Трассовый обзорный	16 2		(16
	радиолокатор (ОРЛ-Т) (по типам)	16	24	6	46
5	Тема 5. Радиолокационная станция	4	6	6	16
	обзора летного поля (РЛС ОЛП)	4	0	O	10
6	Тема 6. Посадочные радиолокаторы	4	-	6	10
7	Тема 7. Аппаратура первичной				
	обработки радиолокационной	16	8	13	37
	информации (АПОИ)				
	Промежуточная аттестация				9
	Итого за 8 семестр	54	54	63	180
	Раздел 3. Вторичные радиолокаторы (ВРЛ)	20	34	12	66
8	Тема 8. Автоматические	8	8	6	22
	радиопеленгаторы (по типам)	0	0	0	22
9	Тема 9. Вторичные радиолокаторы	12	26	6	44
	(по типам)	14	20	U	77
	Раздел 4. Средства автоматического	22	18	18	58
<u></u>	зависимого наблюдения (АЗН)		10		
10	Тема 10. Автоматическое зависимое	8	6	6	20
	наблюдение (АЗН)			<u> </u>	
11	Тема 11. Многопозиционная система	8	8	6	22
10	наблюдения (МПСН)		-	-	
12	Тема 12. Оборудование	6	4	6	16
12	видеонаблюдения		A	1.6	
13	Курсовая работа		4	16	20
	Промежуточная аттестация	42	<i>51</i>	16	36
	Итого за 9 семестр	42	56	100	180
	Итого за дисциплину	96	110	109	360

5.3 Содержание дисциплины

Раздел 1. Средства наблюдения в системе связи, навигации и наблюдения/организации воздушного движения (CNS/ATM)

Tema 1. Место и роль средств наблюдения в системе связи, навигации и наблюдения/организации воздушного движения (CNS/ATM)

Понятие системы связи, навигации и наблюдения/организации воздушного движения. Принцип функционирования системы. Место и роль средств наблюдения в системе. Средства наблюдения. Общие понятия и определения. Наблюдение. Принцип наблюдения. Объекты наблюдения. Системы наблюдения. Понятие средства наблюдения. Классификация средств наблюдения. Требования, предъявляемые к системам и средствам наблюдения.

Тема 2. Концепция развития средств наблюдения

Основные положения концепции. Стратегия развития концепции Реализация концепции развития наблюдения в системе (CNS/ATM).

Раздел 2. Первичные обзорные радиолокаторы (ПОРЛ)

Тема 3. Аэродромные обзорные радиолокаторы (ОРЛ-А) (по типам)

Общие сведения об ОРЛ-А. Основные принципы построения и функционирования ОРЛ-А. Конструктивное построение аппаратуры ОРЛ-А. Эксплуатационные ограничения аппаратуры ОРЛ-А. Система технического обслуживания и ремонта ОРЛ-А. Контроль работоспособности аппаратуры ОРЛ-А.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.

Тема 4. Трассовый обзорный радиолокатор (ОРЛ-Т) (по типам)

Общие сведения об ОРЛ-Т. Основные принципы построения и функционирования ОРЛ-Т. Конструктивное построение аппаратуры ОРЛ-Т. Эксплуатационные ограничения аппаратуры ОРЛ-Т. Система технического обслуживания и ремонта ОРЛ-Т. Контроль работоспособности аппаратуры ОРЛ-Т.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования контексте цифровой трансформации профессиональной деятельности.

Тема 5. Радиолокационная станция обзора летного поля (РЛС ОЛП)

Общие сведения о РЛС ОЛП. Основные принципы построения и функционирования РЛС ОЛП. Конструктивное построение аппаратуры РЛС ОЛП. Эксплуатационные ограничения аппаратуры РЛС ОЛП. Система технического обслуживания и ремонта РЛС ОЛП. Контроль работоспособности аппаратуры РЛС ОЛП.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.

Тема 6. Посадочные радиолокаторы (ПРЛ)

Общие сведения о **ПР**Л. Основные принципы построения и функционирования **ПР**Л. Конструктивное построение аппаратуры **ПР**Л. Эксплуатационные ограничения аппаратуры ОРЛ-А. Система технического обслуживания и ремонта **ПР**Л. Контроль работоспособности аппаратуры **ПР**Л.

Тема 7. Аппаратура первичной обработки радиолокационной информации (АПОИ)

Общие сведения об АПОИ. Основные принципы построения и функционирования АПОИ. Конструктивное построение аппаратуры АПОИ. Эксплуатационные ограничения аппаратуры АПОИ. Система технического обслуживания и ремонта АПОИ. Контроль работоспособности аппаратуры.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.

Раздел 3. Вторичные радиолокаторы (ВРЛ)

Тема 8. Автоматические радиопеленгаторы (по типам)

Общие принципы построения и функционирования АРП. Общие сведения об АРП. Основные принципы построения и функционирования АРП. Конструктивное построение аппаратуры АРП. Эксплуатационные ограничения аппаратуры АРП. Система технического обслуживания и ремонта АРП. Контроль работоспособности аппаратуры АРП.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.

Тема 9. Вторичные радиолокаторы (ВРЛ) (по типам)

Общие принципы построения и функционирования ВРЛ.

Общие сведения об ВРЛ. Основные принципы построения и функционирования ВРЛ. Конструктивное построение аппаратуры ВРЛ. Эксплуатационные ограничения аппаратуры ВРЛ. Система технического обслуживания и ремонта ВРЛ. Контроль работоспособности аппаратуры ВРЛ.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.

Раздел 4. Средства автоматического зависимого наблюдения

Тема 10. Автоматическое зависимое наблюдение (АЗН)

Общие принципы построения и функционирования АЗН. Общие сведения об АЗН. Основные принципы построения и функционирования АЗН. Конструктивное построение аппаратуры АЗН. Эксплуатационные ограничения аппаратуры АЗН. Система технического обслуживания и ремонта АЗН. Контроль работоспособности аппаратуры АЗН.

Автоматизация процесса управления и контроля средства о использованием современных методов компьютерного моделирования контексте цифровой трансформации профессиональной деятельности.

Тема 11. Многопозиционная система наблюдения (МПСН)

Общие принципы построения и функционирования МПСН.

Общие сведения о МПСН. Основные принципы построения и функционирования МПСН. Конструктивное построение аппаратуры МПСН. Эксплуатационные ограничения аппаратуры МПСН. Система технического обслуживания и ремонта МПСН. Контроль работоспособности аппаратуры МПСН.

Автоматизация процесса управления и контроля средства с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.

Тема 12. Оборудование видеонаблюдения

Общие сведения о системах и средствах видеонаблюдения. Принципы построения и функционирования средств видеонаблюдения. Использование видеооборудования в целях УВД. Система технического обслуживания и ремонта.

5.4 Практические занятия

Номер темы	Тематика практических занятий	Трудоемкость
дисциплины		(часы)
	8 семестр	
1	Средства наблюдения. Требования, предъявляемые к ним.	2
2	Реализация концепции развития средств наблюдения в Российской Федерации.	2
3	Основные принципы построения и функционирования АОРЛ «Лира-А10».	4
3	Система технического обслуживания и ремонта АОРЛ «Лира-A10». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
3	Основные принципы построения и функционирования АОРЛ «АОРЛ-1А».	4
3	Система технического обслуживания и ремонта АОРЛ «АОРЛ-1А». Автоматизация процесса управления и контроля с использованием современных методов	2

Номер темы	Тематика практических занятий	Трудоемкость
дисциплины		(часы)
	компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	
4	Основные принципы построения и функционирования ТРЛК 12A6 «Сопка-2».	4
4	Система технического обслуживания и ремонта ТРЛК 12А6. Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
4	Основные принципы построения и функционирования ТРЛК «Утес-Т».	4
4	Система технического обслуживания и ремонта ТРЛК «Утес- Т». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
4	Основные принципы построения и функционирования ТРЛК 1Л118 «Лира-1».	4
4	Система технического обслуживания и ремонта ТРЛК 1Л118 «Лира-1. Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
4	Основные принципы построения и функционирования ТРЛК «Лира – ТВК».	4
4	Система технического обслуживания и ремонта ТРЛК «Лира – ТВК». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
5	Основные принципы построения и функционирования РЛС ОЛП «Атлантика».	4
5	Система технического обслуживания и ремонта РЛС ОЛП «Атлантика». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
7	Основные принципы построения и функционирования АПОИ ПРИОР.	2
7	Основные принципы построения и функционирования АПОИ Ладога.	2
7	Основные принципы построения и функционирования АПОИ ТВК.	2
7	Основные принципы построения и функционирования АПОИ КСА НКАД Вега.	2
	Итого за семестр	54
	9 семестр	
8	Основные принципы построения и функционирования АРП.	2
8	Система технического обслуживания и ремонта АРП «АРП-	2

Номер темы дисциплины	Тематика практических занятий	Трудоемкость (часы)
	95».	
8	Система технического обслуживания и ремонта АРП 75 (80).	2
8	Система технического обслуживания и ремонта АРП DF-2000 «Платан».	2
9	Основные принципы построения и функционирования ВРЛ типа «Лира-ВА».	4
9	Система технического обслуживания и ремонта ВРЛ типа «Лира-ВА». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
9	Основные принципы построения и функционирования ВРЛ «Корень-АС».	4
9	Система технического обслуживания и ремонта ВРЛ «Корень-АС».	2
9	Основные принципы построения и функционирования МВРЛ типа «Аврора».	4
9	Система технического обслуживания и ремонта МВРЛ типа «Аврора». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
9	Основные принципы построения и функционирования ВРЛ типа «Крона».	4
9	Система технического обслуживания и ремонта ВРЛ типа «Крона».	2
9	Основные принципы построения и функционирования ВРЛ «Радуга».	2
10	Основные принципы построения и функционирования АЗН (НС-1А).	2
10	Основные принципы построения и функционирования АЗН «Сонар».	2
10	Основные принципы построения и функционирования АЗН «Сота X».	2
11	Основные принципы построения и функционирования МПСН «Альманах».	2
11	Система технического обслуживания и ремонта МПСН «Альманах». Автоматизация процесса управления и контроля с использованием современных методов компьютерного моделирования в контексте цифровой трансформации профессиональной деятельности.	2
11	Основные принципы построения и функционирования МПСН «Мера».	2
11	Основные принципы построения и функционирования МПСН «Тетра».	2
12	Основные принципы построения, функционирования и применения оборудования видеонаблюдения.	2
12	Система технического обслуживания и ремонта оборудования видеонаблюдения.	2

Номер темы	Тематика практических занятий	Трудоемкость
дисциплины		(часы)
	Итого за семестр	52
Итого		106

5.5 Лабораторный практикум

Лабораторный практикум учебным планом не предусмотрен.

5.6 Самостоятельная работа

№ раздела, темы дисциплины	Виды самостоятельной работы	Трудо- емкость (часы)
	8 семестр	
1-7	Подготовка к лекциям [1] - самостоятельный поиск, анализ информации и проработка дополнительного учебного материала по изучаемой теме; - подготовка к устному опросу; - подготовка дополнительных вопросов для использования в устном опросе по изучаемой	14
1-7	Подготовка к практическим занятиям [1,5,6] -практическое повторение примеров, содержащихся в пособии [1]; - самостоятельный поиск, анализ информации и разработка усложненных примеров по изучаемой теме.	20
3	Проработка учебного материала в соответствии с графиком самостоятельной работы (по конспектам, учебной, методической и научной литературе) по теме «Аэродромный обзорный радиолокатор АОРЛ-85» [4, 7]	12
3	Проработка учебного материала в соответствии с графиком самостоятельной работы (по конспектам, учебной, методической и научной литературе) по теме «Аэродромный обзорный радиолокатор ДРЛ-7СМ» [4, 7]	8
7	Проработка учебного материала в соответствии с графиком самостоятельной работы (по конспектам, учебной, методической и научной литературе) по теме «АПОИ типа Иней, Ладога» [4, 6]	9
	Итого за семестр	63
	9 семестр	
8-12	Подготовка к лекциям [1] - самостоятельный поиск, анализ информации и проработка дополнительного учебного материала по изучаемой теме; - подготовка к устному опросу; - подготовка дополнительных вопросов для использования в устном опросе по изучаемой теме	12
8-12	Подготовка к практическим занятиям [1,5,6] -практическое повторение примеров, содержащихся в пособии [1]; - самостоятельный поиск, анализ информации и разработка	18

	усложненных примеров по изучаемой теме.	
8-12	Выполнение курсовой работы [2, 3, 4]	16
	Итого за семестр	46
	Итого	109

5.7 Курсовая работа

При изучении дисциплины "Радиоэлектронные средства наблюдения" выполняется курсовая работа «Расчет и построение рабочей зоны диспетчерского радиолокатора».

Наименование этапа выполнения курсовой работы	Трудо- емкость (часы)
Этап 1. Выдача задания на курсовую работу.	2
Этап 2. Расчет максимальной дальности обнаружения средства наблюдения.	2
Этап 3. Построение зоны обзора РЛС в вертикальной плоскости без учета влияний земной поверхности.	2
Этап 4. Вычисление дальности обнаружения РЛС с учетом влияния земной поверхности.	2
Этап 5. Построение графика углов закрытия в рабочей зоне РЛС.	2
Этап 6. Построение зоны обзора РЛС в горизонтальной плоскости, с учетом углов закрытия.	2
Этап 7. Составление письменного отчета	4
Этап 8. Подготовка электронных файлов результатов моделирования	2
Защита курсовой работы	2
Итого по курсовой работе:	20
самостоятельная работа студента, отведенная на выполнение курсовой работы	16
контактная работа	4

6 Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Автоматизированные системы управления воздушным движением: Новые информационные технологии в авиации[Текст]: Учеб.пособие /Р.М. Ахмедов, А.А. Бибутов[и др.]; под ред. С.Г. Пятко и А.И. Красова. СПб.: Политехника, 2004. 446 с. ISBN 5-7325-0779-5. 10 экземпляров.
- 2. Зырянов, Ю.Т. Основы радиотехнических систем [Текст]: учебное пособие / Ю.Т. Зырянов, О.А. Белоусов, П.А. Федюнин. Тамбов: Изд-во

- ФГБОУ ВПО «ТГТУ», 2011. 144 с. ISBN 978-5-8265-1021-6. 10 экземпляров.
- 3. Радиолокационные системы [Текст]: учебник /В.П. Бердышев, Е.Н. Гарин, А.Н. Фомин и [др.]; под общ.ред. В.П. Бердышева. Красноярск: Сиб. федер. ун-т, 2011. 400 с. ISBN 978-5-7638-2479-7. 10 экземпляров.
- 4. Радиосветотехническое обеспечение полетов [Текст]: учебное пособие / В.И. Коломиец. Красноярск: Сибирский филиал института аэронавигации, 2008.- 318 с. 10 экземпляров.
 - б) дополнительная литература
- 5. Автоматизированные системы управления воздушным движением [Текст]: учебное пособие /А.Р. Бестугин, М.А. Велькович, А.В. Володягин и [др.]; под науч. ред. Ю.Г. Шатракова. СПб.: Политехника, 2012. 450 с. ISBNISBN 25-1047-8.
- 6. Кузнецов, А.А. Радиолокационное оборудование автоматизированных систем управления воздушным движением [Текст]: учебник /А.А. Кузнецов. М.: Транспорт, 1995. 267 с.
- 7. Тучков, Н.Т. Автоматизированные системы и радиоэлектронные средства УВД [Текст]: учебник /Н.Т. Тучков. М.: Транспорт, 1994. 245 с.
- в) перечень ресурсов информационно-телекоммуникационной сети «Интернет»:
- 8. **«Отечественная радиотехника»** виртуальный музей [Электронный ресурс]/Режим доступа: http://rw6ase.narod.ru, свободный (дата обращения 27.01.2021).
- 9. **«Радиокот»** виртуальный форум [Электронный ресурс]/Режим доступа: http://radiokot.ru/forum, свободный (дата обращения 27.01.2021).
- 10.**Scilab** [Программное обеспечение] Режим доступа http://www.scilab.org/свободный (дата обращения: 27.01.2021).
- 11.**GNU Octave**[Программное обеспечение] Режим доступа http://gnu.org свободный (дата обращения: 27.01.2021).
- 12. Программный пакет MULTISIM 10.1 для моделирования электронных схем [Программное обеспечение] Госконтракт № SBR1010080401-00001346-01 от 13 ноября 2010 года ООО «Динамика».
- 13. **MATHCAD-14** [Программное обеспечение] Лицензия №2566427 от 27 декабря 2010 года.
- г) программное обеспечение (лицензионное и свободно распространяемое), базы данных, информационно-справочные и поисковые системы:
- 14. Электронная библиотека научных публикаций «eLIBRARY.RU» [Электронный ресурс] Режим доступа: http://elibrary.ru/, свободный (дата обращения: 27.01.2021).
- 15. Электронно-библиотечная система издательства «Лань» [Электронный ресурс] Режим доступа: http://e.lanbook.com/, свободный (дата обращения: 27.01.2021).

16. **Консультант Плюс** [Электронный ресурс]: официальный сайт компании Консультатнт Плюс. — Режим доступа: http://www.consultant.ru/, свободный (дата обращения 27.01.2021).

7 Материально-техническое обеспечение дисциплины

Для проведения образовательного используется аудитория №242, характеристика материально-технического обеспечения которых приведена в ниже следующей таблице.

№ п\п	Наименование дисциплины (модуля), практик в соответствии с УП	Наименование специальных* помещений и помещений для самостоятельной работы	Оснащенност ь специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего документа
1	Радиоэлектронны е средства наблюдения.	Ауд. 242 Аудитория для проведения занятий лекционного типа Аудитория проведения практических занятий	Доска меловая 15 персональных компьютеров Проектор Асег X1261Р Экран Библиотека примеров компьютерного моделирования радиотехнических систем Комплект тематических плакатов по дисциплине «Электроника и электротехника», фонд специальной литературы, фонд учебных пособий	Scilab [Программное обеспечение] — Режим доступа http://www.scilab.org/свободный (дата обращения: 11.01.2020). Программный пакет МULTISIM 10.1 для моделирования электронных схем [Программное обеспечение] (Госконтракт № SBR1010080401-00001346-01 от 13 ноября 2010 года, ООО «Динамика») МАТНСАD-14 [Программное обеспечение] (лицензия № 2566427 от 27 декабря 2010 года)

⁸ Образовательные и информационные технологии

Входной контроль проводится в форме устных опросов с целью оценивания остаточных знаний по ранее изученным дисциплинам или темам изучаемой дисциплины.

Лекция как образовательная технология представляет собой устное, систематическое и последовательное изложение преподавателем учебного целенаправленной материала целью организации познавательной деятельности студентов по овладению знаниями, умениями и навыками читаемой дисциплины. В лекции делается акцент на реализацию главных идей и направлений в изучении дисциплины, дается установка на последующую самостоятельную работу. Лекции-визуализации сопровождаются демонстрацией работы реальных радиотехнических устройств действующих имитационных моделей с использованием образовательной анализ конкретной ситуации на основе профессиональных ситуационных задач.

_____Практические занятия проводятся с использованием специальных компьютерных программ и предназначены для закрепления полученных знаний, а также выработки необходимых умений и навыков в ходе решения расчетных и ситуационных задач профессиональной деятельности.

Курсовая работа по дисциплине представляет собой самостоятельную учебно-исследовательскую работу студента и ставит цель систематизировать, закрепить и углубить теоретические и практические знания, умения и навыки по профилю подготовки с целью их применения для решения профессиональных задач.

Таким образом, лекции-визуализации, практические занятия и курсовая работа по дисциплине «Радиоэлектронные средства наблюдения» являются составляющими практической подготовки обучающихся, так как предусматривают их участие в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

работа студента Самостоятельная реализуется В систематизации, контроле и регулировании его учебно-профессиональной планировании, также активизации собственных деятельности, В познавательномыслительных действий без непосредственной помощи и руководства со стороны преподавателя. Разновидностью самостоятельной работы является курсовая работа. Основной целью самостоятельной работы студента является формирование навыка самостоятельного приобретения, закрепления полученных знаний по некоторым несложным вопросам теоретического курса, закрепление и углубление полученных знаний, умений и навыков во время лекций и практических занятий.

9 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Фонд оценочных средств по дисциплине «Радиоэлектронные средства наблюдения» предназначен для выявления и оценки уровня и качества знаний

студентов по результатам текущего контроля и промежуточной аттестации по итогам освоения дисциплины в виде зачета в восьмом и экзамена в девятом семестрах.

Фонд оценочных средств для текущего контроля включает: устные опросы, расчетные/логические задачи, ситуационные задачи и темы курсовых работ. Для обеспечения более глубокого освоения дисциплины фонд оценочных средств по семестрам строится по принципу нарастающего итога, интегрируя темы текущего семестра с ранее освоенным материалом.

Устный опрос проводится на практических занятиях с целью контроля усвоения теоретического материала, излагаемого на лекции. Перечень вопросов определяется уровнем подготовки учебной группы, а также индивидуальными особенностями обучающихся. Также устный опрос проводится для входного контроля по вопросам (п. 9.4).

Курсовая работа — авторский научно-исследовательский проект студента, направленный на выработку исследовательских навыков, опыта работы с научными источниками и создание законченного самостоятельного исследования. Оценочным средством являются варианты задания для курсовой работы (п.9.3). Написание и защита курсовой работы запланирована на 9 семестр.

Промежуточная аттестация по итогам освоения дисциплины «Радиоэлектронные средства наблюдения» проводится в восьмом семестре в форме зачета и в девятом семестре в форме экзамена. Этот вид промежуточной аттестации позволяет оценить уровень освоения студентом компетенций за весь период изучения дисциплины.

Зачет предполагает устный ответ на 1 теоретический вопрос, решение расчетной/логической задачи и решение ситуационной задачи из перечня типовых вопросов и задач п.9.6.

Экзамен предполагает устный ответ на 1 теоретический вопрос, решение расчетной/логической задачи и решение ситуационной задачи из перечня типовых вопросов и задач п 9.6.

Описание шкалы оценивания, используемой для проведения промежуточных аттестаций, приведено в п. 9.5.

9.1 Балльно-рейтинговая оценка текущего контроля успеваемости и знаний студентов

Не применяется.

9.2 Методические рекомендации по проведению процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Устный опрос оценивается следующим образом:

«зачтено»: обучающийся дает ответ на поставленный вопрос по существу и правильно отвечает на уточняющие вопросы;

«не зачтено»: обучающийся отказывается отвечать на поставленный вопрос, либо отвечает на него неверно и при формулировании дополнительных (вспомогательных) вопросов.

Решение расчетных задач оценивается:

«зачтено»: обучающийся самостоятельно правильно решает задачу, анализирует и дает обоснованную оценку полученных результатов;

«не зачтено»: обучающийся отказывается от выполнения задачи или не способен ее решить самостоятельно, а также с помощью преподавателя.

Решение ситуационных задач оценивается:

«зачтено»: обучающийся самостоятельно правильно решает задачу, дает обоснованную оценку по итогу решения;

«не зачтено»: обучающийся отказывается от выполнения задачи или не способен ее решить самостоятельно, а также с помощью преподавателя, а также проанализировать, обосновать и оценить полученные результаты.

9.3 Темы курсовых работ по дисциплине

При изучении дисциплины "Радиоэлектронные средства наблюдения" выполняется курсовая работа «Расчет и построение рабочей зоны диспетчерского радиолокатора».

Исходные данные для выполнения курсовой работы определяются исходя из номера зачетной книжки студента или порядкового номера студента в группе по правилам, изложенным в методических указаниях по выполнению курсовой работы.

9.4 Контрольные вопросы для проведения входного контроля остаточных знаний по обеспечивающим дисциплинам в форме устного опроса

Обеспечивающие дисциплины: «Введение в специальность», «Учебная практика», «Производственная (эксплуатационно-технологическая) практика» (4 семестр, 6 семестр), «Электромагнитная совместимость РЭС», «Инженерно-техническое оборудование аэродромов.

- 1. Временное и спектральное представление радиолокационных сигналов.
- 2. Назначение средств наблюдения,
- 3. Какие требования предъявляются к размещению средств наблюдения.
- 4. Диаграмма направленности антенны.
- 5. Двоичная система счисления и кодирование цифровых сигналов.
- 6. Дальность прямой радиовидимости.
- 7. Особенности распространение радиоволн.

- 8. Методы измерения расстояний.
- 9. Классификация непреднамеренных помех.
- 10. Какие задачи решаются средствами наблюдения.

9.5 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Компетенции	Показатели	Критерии оценивания
	оценивания	
	(индикаторы	
	достижения)	
	компетенций	
		I этап (8-й семестр)
ПК-7	ИД ¹ ПК7	Знает:
		 назначение, состав, основные характеристики и принцип функционирования средств наблюдения по типам; порядок размещения средств наблюдения на позиции.
		Умеет:
		- анализировать сведения о средствах наблюдения с целью выбора их состава и размещения на позициях по типам. Владеет:
		- навыками сравнительной оценки выбираемых средств наблюдения по типам.
		Знает:
	$ UД^2_{\Pi K7} $	- принципы построения и функционирования средств
	11/4 IIK/	наблюдения и их систем по типам;
		- систему технического обслуживания и ремонта
		средств наблюдения по типам;
		- требования к размещению средств наблюдения на
		позиции.
		Умеет:
		- обосновать выбор средств наблюдения с целью размещения их на позициях по типам.
		Владеет:
		- методами и приемами обоснования выбора и размещения средств наблюдения по типам.
	$ИД^3_{\Pi K7}$	Знает:
		- характеристики, определяющие функциональное предназначение средств наблюдения по типам; Умеет:
		- анализировать и рассчитывать характеристики,
		определяющие функциональное предназначение
		средств наблюдения по типам, с целью выбора их
		состава и размещения на позициях по типам.
		Владеет:
		- методами и приемами оптимизации выбираемых
		средств наблюдения с целью выбора их состава и

Компетенции	Показатели оценивания (индикаторы достижения) компетенций	Критерии оценивания
		размещения на позициях по типам.
		II этап (9-й семестр)
ПК-7	ИД ¹ пк7	Знает: - назначение, состав, основные характеристики и принцип функционирования средств наблюдения по типам; - порядок размещения средств наблюдения на позиции. Умеет: - анализировать сведения о средствах наблюдения с целью выбора их состава и размещения на позициях по типам.
		Владеет: - навыками сравнительной оценки выбираемых средств наблюдения по типам.
	ИД ² пк7	Знает: - принципы построения и функционирования средств наблюдения и их систем по типам; - систему технического обслуживания и ремонта средств наблюдения по типам; - требования к размещению средств наблюдения на позиции. Умеет: - обосновать выбор средств наблюдения с целью размещения их на позициях по типам. Владеет: - методами и приемами обоснования выбора и размещения средств наблюдения по типам.
	ИД ³ пк7	Знает: - характеристики, определяющие функциональное предназначение средств наблюдения по типам; Умеет: - анализировать и рассчитывать характеристики, определяющие функциональное предназначение средств наблюдения по типам, с целью выбора их состава и размещения на позициях по типам. Владеет: - методами и приемами оптимизации выбираемых средств наблюдения с целью выбора их состава и размещения на позициях по типам.

Шкала оценивания при проведении промежуточной аттестации.

Для зачета в 8 семестре: Устный опрос оценивается следующим образом:

«зачтено»: обучающийся дает ответ на поставленный вопрос по существу и правильно отвечает на уточняющие вопросы;

«не зачтено»: обучающийся отказывается отвечать на поставленный вопрос, либо отвечает на него неверно и при формулировании дополнительных (вспомогательных) вопросов.

Решение расчетных задач оценивается:

«зачтено»: обучающийся самостоятельно правильно решает задачу, анализирует и дает обоснованную оценку полученных результатов;

«не зачтено»: обучающийся отказывается от выполнения задачи или не способен ее решить самостоятельно, а также с помощью преподавателя.

Решение ситуационных задач оценивается:

«зачтено»: обучающийся самостоятельно правильно решает задачу, дает обоснованную оценку по итогу решения;

«не зачтено»: обучающийся отказывается от выполнения задачи или не способен ее решить самостоятельно, а также с помощью преподавателя, а также проанализировать, обосновать и оценить полученные результаты.

Для экзамена в 9 семестре.

«Отлично» выставляется обучающемуся, показавшему всесторонние, систематизированные, глубокие знания по рассматриваемой компетенции и умение уверенно применять их на практике при решении задач, свободное и правильное обоснование принятых решений. Отвечая на вопрос, может быстро и безошибочно проиллюстрировать ответ собственными примерами.

При решении расчетной/логической задачи обучающийся самостоятельно правильно решает задачу, дает обоснованную оценку итогам решения.

При решении ситуационной задачи обучающийся самостоятельно правильно решает задачу, использует методы имитационного и численного моделирования, дает обоснованную оценку итогам решения и их связи с соответствующим теоретическим материалом.

«Хорошо» выставляется обучающемуся, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задачи некоторые неточности, хорошо владеет всем содержанием, видит взаимосвязи, но не всегда делает это самостоятельно без помощи преподавателя.

При решении расчетной/логической задачи обучающийся при незначительной помощи преподавателя правильно решает задачу, дает обоснованную оценку итогам решения.

При решении ситуационной задачи обучающийся при незначительной помощи преподавателя правильно решает задачу, использует методы имитационного и численного моделирования, дает достаточно полную оценку итогам решения и их связи с соответствующим теоретическим материалом.

«Удовлетворительно» выставляется обучающемуся, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы в рамках заданной компетенции, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации. Отвечает только на конкретный вопрос, соединяет разных разделов курса только знания ИЗ при наводящих вопросах преподавателя.

При решении расчетной/логической задачи обучающемуся требуется неоднократная помощь преподавателя при этом задача решается не полностью.

При решении ситуационной задачи обучающемуся требуется неоднократная помощь преподавателя, методы имитационного и численного моделирования используются неуверенно и только после подсказок преподавателя, оценка итогов решения и их связи с соответствующим теоретическим материалом является неполной.

«Неудовлетворительно» выставляется обучающемуся, который не знает большей части основного содержания учебной программы дисциплины в рамках компетенций, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач. Не раскрыты глубина и полнота при ответах.

Расчетная/логическая задача не решена даже при помощи преподавателя. Ситуационная задача не решена даже при помощи преподавателя.

Шкала оценивания курсовой работы.

Шкала	Составляющие	Признаки		
оценивания				
Отлично		Обучающийся показывает умения и навыки		
	Практическая часть	выполнения расчетов характеристик		
		периодических сигналов и линейных цепей.		
		Расчеты в курсовом проекте обоснованы и		
		выполнены правильно на 90-100 %.		
	Выводы	Выводы грамотно сформулированы и		
		обоснованы.		
	Использованные	Использованные источники подобраны		
		грамотно. Указаны или выведены все		
		необходимые для проведения расчетов		
	источники	формулы. Их количество соответствует		
		требованиям к курсовой работе.		
	Оформление	Курсовая работа оформлена аккуратно		
		согласно требованиям к оформлению без		
		орфографических и грамматических		
		ошибок. Высокое качество оформления		
		графиков, схем и диаграмм.		

Шкала оценивания	Составляющие	Признаки	
Оценивания	Своевременность выполнения	Курсовая работа выполнена и сдана на проверку своевременно.	
	Защита	Доступно и ясно представляет результаты курсовой работы. Ответы на вопросы полные, глубокие. Обучающийся всесторонне оценивает и интерпретирует полученные результаты, доказывает их значимость. Грамотно и аргументировано представляет комментарии к расчетам.	
	Практическая часть	Обучающийся показывает умения и навыки выполнения расчетов характеристик периодических сигналов и линейных цепей. Расчеты в курсовом проекте обоснованы и выполнены правильно на 80-90 %.	
Хорошо	Выводы	Выводы сформулированы с небольшими неточностями.	
	Использованные источники	Использованные источники подобраны грамотно. Их количество соответствует требованиям к курсовой работе. Указаны или выведены практически все необходимые для проведения расчетов формул.	
	Оформление	Курсовая работа оформлена аккуратно согласно требованиям к оформлению с небольшим количеством орфографических и грамматических ошибок. Достаточно высокое качество оформления графиков, схем и диаграмм.	
	Своевременность	Курсовая работа выполнена и сдана на	
	выполнения	проверку своевременно.	
	Защита	Доступно и ясно представляет результаты курсовой работы. Ответы на вопросы полные. Обучающийся оценивает и интерпретирует полученные результаты с незначительными неточностями, демонстрирует самостоятельное мышление.	
Удовлетворите льно	Практическая часть	Обучающийся показывает слабые навыки выполнения расчетов характеристин периодических сигналов и линейных цепей Расчеты обоснованы и выполнень правильно на 70-80 %.	
	Выводы	Выводы сформулированы со значительными неточностями или не все выводы сформулированы.	
	Использованные источники	Использованные источники подобраны небрежно. Их количество меньше, чем соответствует требованиям к курсовой работе. Указано или выведено большинство необходимых для проведения расчетов	

Шкала оценивания	Составляющие	Признаки
оденныши		формул.
	Оформление	Курсовая работа оформлена неаккуратно с большим количеством орфографических и грамматических ошибок. Среднее качество оформления графиков, схем и диаграмм.
	Своевременность	Курсовая работа выполнена и сдана на
	выполнения	проверку позже указанного срока.
	Защита	Обучающийся с трудом докладывает результаты курсовой работы. Ответы на вопросы неполные. Обучающийся не может оценить полученные результаты и интерпретирует их со значительными неточностями.
	Практическая часть	Обучающийся не демонстрирует умения и навыки расчетов характеристик периодических сигналов и линейных цепей, расчеты выполнены с большим количеством ошибок или не в полном объеме.
	Выводы	Выводы не сформулированы.
Неудовлетвор ительно	Использованные источники	Использованные источники не соответствуют теме. Указано недостаточное количество или допущены ошибки в выводе необходимых для проведения расчетов формул.
	Оформление	Оформление курсовой работы не соответствует требованиям. Большое количество орфографических и грамматических ошибок. Низкое качество оформления графиков, схем и диаграмм.
	Защита	Обучающийся не может представить результаты курсовой работы. Не отвечает на вопросы или отвечает неверно.

9.6 Типовые контрольные задания для проведения текущего контроля и промежуточной аттестации по итогам обучения по дисциплине

Перечень типовых вопросов для текущего контроля в форме устного опроса и проведения промежуточной аттестации в форме зачета в 8 семестре

- 1. Уравнение дальности действия РЛС в свободном пространстве. Анализ уравнения.
 - 2. Вторичная обработка РЛИ.
 - 3. Нормы ИКАО на ЭТХ аэродромных РЛС.
 - 4. Система ВРЛ. Самолетные ответчики. Характеристика. Особенности.
- 5. ЭТХ РЛС. Разрешающая способность по азимуту и дальности. Вывод формул.

- 6. Нормы ИКАО на ЭТХ трассовых РЛС.
- 7. Аппаратура ПОИ «Приор».
- 8. Селекция радиолокационных сигналов.
- 9. Дальность действия РЛС в различных условиях.
- 10. Обзорные трассовые РЛС. Перспективы развития.
- 11. Система ВРЛ. Защита по каналу ответа.
- 12. ЭТХ РЛС. Характеристики помехозащищенности и надежности.
- 13. Защита РЛС от активных помех. Способы. Характеристика одного из них.
- 14. Система ВРЛ. Состав и объем передаваемой информации в режимах УВД и RBS. Ее источники.
 - 15. Поляризационная селекция.
 - 16. Обработка радиолокационной информации. Общие сведения.
 - 17. Самолетные ответчики типа СОМ 64. СОМ 72М.
 - 18. Система ВРЛ. Характеристики по ИКАО.
 - 19. Принципы и методы измерения координат.
 - 20. Общие сведения об ЭМП.
 - 21. РЛС СДЦ «Слепые скорости».
 - 22. Система ВРЛ. Защита по каналу вопроса.
 - 23. Принципы работы системы ВРЛ.
 - 24. РЛС. Индикаторные устройства.
 - 25. Система ВРЛ. Структура ответных кодов в режиме УВД.
- 26. Защита РЛС от пассивных помех. Способы. Характеристика одного из них.
 - 27. Методы радиолокации.
 - 28. РЛС. Радиоприемные устройства.
 - 29. Дальность действия РЛС при активном ответе.
- 30. Обзорные аэродромные РЛС. Типы. Подробно Экран 85 и ее модификации.
- 31. ЭТХ РЛС. Точность измерения угловых координат. Привести формулы и дать анализ.
 - 32. Основные понятия и определения теории радиолокации.
- 33. Обзорные трассовые РЛС. Типы. Подробно $\Pi-37$ и ее модификация (Лира -1).
 - 34. РЛС. Радиопередающие устройства.
- 35. Технические параметры РЛС. Скорость обзора по азимуту, число импульсов в пачке, время обновления информации.
 - 36. РЛС. Антенные переключатели.
 - 37. Озорные аэродромные РЛС. Типы. Подробно ДРЛ 7 см (Экран 3).
 - 38. Радиолокационные средства и их свойства.
 - 39. Обзорные аэродромные РЛС «Утес А».
 - 40. Что такое импульс (какие бывают) и сигнал.
 - 41. РЛС. Антенны.
 - 42. ЭТХ РЛС. Зона обзора и дальность обнаружения цели.

- 43. Измеряемые координаты с помощью РЛС.
- 44. Технические параметры РЛС. Виды излучаемых колебаний, длины волны, период и частота повторения импульсов.
 - 45. Система ВРЛ. Структура ответных кодов в режимах RBS.
 - 46. Обзорные трассовые РЛС «Утес Т».
- 47. Технические параметры. Реальная чувствительность РПУ. Выходные устройства и вид выходной информации.
 - 48. РЛС. Синхронизатор.
 - 49. Режим работы РЛС СДЦ. Выделение полезных сигналов.
 - 50. Система ВРЛ. Принцип кодирования запросных и ответных кодов.
- 51. Технические параметры РЛС. Мощность, форма и длительность импульсов.
 - 52. Обзорные трассовые РЛС. Нормы ИКАО, пояснения.
 - 53. Режимы работы РЛС СДЦ. Подавление сигналов и помех.
 - 54. Система ВРЛ. Принцип кодирования запросных и ответных кодов.
 - 55. Обзорные аэродромные РЛС. Нормы ИАКО, пояснения.
- 56. Технические параметры РЛС. Методы обзора ВП и измерения координат.
 - 57. ЭТХ РЛС. Разрешающая способность по дальности. Вывод формулы.
 - 58. Система ВРЛ. Структура запросных кодов в режимах УВД.
 - 59. Принцип работы импульсной РЛС.
 - 60. РЛС обзора летного поля «Атлантика».
- 61. ЭТХ РЛС. Точность измерения дальности. Привести формулы и дать анализ.
 - 62. Система ВРЛ. Вторичные РЛС. Особенности. Нормы ИКАО.
 - 63. Технические параметры РЛС. Диаграмма направленности антенн.
 - 64. Первичная обработка РЛИ.
- 65. Вторичные РЛС типа Корень Ас, Радуга, Крона, Аврора, МВРЛ СВК.
 - 66. Регулировка усиления ПРМ.

Перечень типовых вопросов для проведения промежуточной аттестации в форме зачета в 8 семестре

- 1. АОРЛ «Лира-А10». Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 2. АОРЛ «Лира-А10». Принцип работы по структурной схеме.
- 3. АОРЛ-1АС. Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 4. АОРЛ 1АС. Принцип работы по структурной схеме.
- 5. АОРЛ- 85. Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 6. АОРЛ 85. Принцип работы по структурной схеме.
- 7. ДРЛ-7СМ. Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 8. ДРЛ-7СМ. Принцип работы по структурной схеме.

- 9. ТОРЛ12А6. Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 10. ТОРЛ 12А6. Принцип работы по структурной схеме.
- 11. ТОРЛ«Утес-Т». Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 12. ТОРЛ «Утес-Т». Принцип работы по структурной схеме.
- 13. ТОРЛ«Лира-1». Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 14. ТОРЛ «Лира-1». Принцип работы по структурной схеме.
- 15. РЛС«Лира-ТВК». Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 16. РЛС«Лира-ТВК». Принцип работы по структурной схеме.
- 17. РЛС ОЛП. Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 18. РЛС ОЛП. Принцип работы по структурной схеме.
- 19. Посадочный радиолокатор РП-4Г (5Г). Назначение, ЭТХ, состав и требования, предъявляемые к ним.
- 20. Посадочный радиолокатор РП-4 Γ (5 Γ). Принцип работы по структурной схеме.
- 21. Основные принципы построения и функционирования посадочного радиолокатора РП-4 Γ (5 Γ).
- 22. Система технического обслуживания и ремонта посадочного радиолокатора РП-4 Γ (5 Γ).
- 23. Основные принципы построения и функционирования АОРЛ «Лира-А10».
- 24. Система технического обслуживания и ремонта АОРЛ «Лира-А10».
- 25. Основные принципы построения и функционирования АОРЛ «АОРЛ-1А».
- 26. Система технического обслуживания и ремонта АОРЛ «АОРЛ-1А».
- 27. Основные принципы построения и функционирования ТРЛК 12A6 «Сопка-2».
- 28. Система технического обслуживания и ремонта ТРЛК 12А6.
- 29. Основные принципы построения и функционирования ТРЛК «Утес-Т».
- 30. Система технического обслуживания и ремонта ТРЛК «Утес-Т».
- 31. Основные принципы построения и функционирования ТРЛК 1Л118 «Лира-1».
- 32. Система технического обслуживания и ремонта ТРЛК 1Л118 «Лира-1».
- 33. Основные принципы построения и функционирования ТРЛК «Лира –ТВК».
- 34. Система технического обслуживания и ремонта ТРЛК «Лира –ТВК».
- 35. Основные принципы построения и функционирования РЛС ОЛП. «Атлантика».
- 36. Система технического обслуживания и ремонта РЛС ОЛП «Атлантика».
- 37. АПОИ ПРИОР. Общие сведения об АПОИ.

- 38. АПОИ ПРИОР. Система ТО и ремонта.
- 39. АПОИ Ладога. Общие сведения об АПОИ.
- 40. АПОИ Ладога. Система ТО и ремонта.
- 41. АПОИ-ТВК. Общие сведения об АПОИ.
- 42. АПОИ-ТВК. Система ТО и ремонта.
- 43. АПОИ КСА НКАД. Общие сведения об АПОИ.
- 44. АПОИ КСА НКАД. Система ТО и ремонта.

Перечень типовых ситуационных задач для текущего контроля в форме устного опроса и проведения промежуточной аттестации в форме зачета в 8 семестре

- **1.** Задача № **1.** Разработать программу технического обслуживания РЛС «Лира-ТВК».
- **2.** Задача № **2.** Разработать программу технического обслуживания ТРЛК «Утес-Т».
- **3.** Задача № **3.** Разработать программу технического обслуживания АОРЛ «Лира-А10».
- **4.** Задача № **4.** Разработать программу технического обслуживания АОРЛ-1 АС.
- **5.** Задача № **5.** Разработать программу технического обслуживания ТРЛК 12А6 «Сопка-2».
- **6.** Задача № 6. Разработать программу технического обслуживания ТРЛК «Лира-Т».
- 7. Задача № 7. Разработать программу технического обслуживания РЛС ОЛП «Атлантика».
- **8.** Задача № **8.** Разработать программу технического обслуживания ТРЛС 1Л118 «Лира-1»
- **9.** Задача № **9.** Разработать программу технического обслуживания АОРЛ-1А.
- **10.** Задача № **10.** Разработать программу технического обслуживания АОРЛ-85ТК.
- **11.** Задача № 6. Разработать программу технического обслуживания АПОИ ПРИОР.
- **12.** Задача № 9. Разработать программу технического обслуживания АПОИ «Ладога».
- **13.** Задача № **10.** Разработать программу технического обслуживания АПОИ-ТВК.
- **14.** Задача № 11. Разработать программу технического обслуживания АПОИ КСА НКАД.

Перечень типовых вопросов для текущего контроля в форме устного опроса в 9 семестре.

- 1. Чем отличается РЛС с активным ответом от пассивной?
- 2. Какие типы радиолокационных станций используются в гражданской авиации для решения задач УВД?
 - 3. Каким образом в РЛС измеряется дальность до объектов?
- 4. Для чего в РЛС используется узкая диаграмма направленности антенны в горизонтальной плоскости?
 - 5. Как выглядит отметка цели на экране индикатора?
- 6. Для чего в электронно-лучевом индикаторе применяется электронная координатная сетка?
- 7. Напишите уравнение, связывающее максимальную дальность действия с параметрами радиолокационной станции. Объясните, каким образом зависит максимальная дальность действия от длины волны при постоянных размерах антенны и неизменном коэффициенте направленного действия.
- 8. Чем определяется разрешающая способность РЛС по дальности и азимуту?
- 9. От чего зависит точность отсчета дальности азимута по электронно лучевому индикатору РЛС?
- 10. Как строится зона обзора РЛС в вертикальной плоскости в прямоугольной системе координат «дальность высота»?
 - 11. Какие типы РЛС обзора воздушного пространства Вам известны?
 - 12. Какое назначение РЛС и их основные характеристики?
 - 13. Какие задачи в РЛС решаются при помощи антенной системы?
 - 14. В чем заключаются особенности антенны РЛС?
- 15. Какой вид диаграмм направленности формируют антенны обзорных РЛС?
 - 16. В чем особенности РЛС с селекцией движущихся целей?
- 17. Какие изменения должны быть внесены в функциональную схему РЛС при её работе на цифровую вычислительную технику?
- 18. Назовите типы индикаторов, применяемых в РЛС обзора воздушного пространства?
 - 19. С какой целью в РЛС используются выносные индикаторы?
- 20. Уравнение дальности действия РЛС в свободном пространстве. Анализ уравнения.
 - 21. Вторичная обработка РЛИ.
 - 22. Нормы ИКАО на ЭТХ аэродромных РЛС.
 - 23. ЭТХ РЛС. Разрешающая способность по азимуту и дальности.
 - 24. Нормы ИКАО на ЭТХ трассовых РЛС.
 - 25. Дальность действия РЛС в различных условиях.
 - 26. Система ВРЛ. Защита по каналу ответа.
- 27. Система ВРЛ. Состав и объем передаваемой информации в режимах УВД и RBS. Ее источники.
 - 28. Поляризационная селекция.

- 29. Принципы и методы измерения координат.
- 30. РЛС СДЦ «Слепые скорости».
- 31. Защита РЛС от пассивных помех. Способы. Характеристика одного из них.
 - 32. Методы радиолокации.
- 33. Технические параметры РЛС. Скорость обзора по азимуту, число импульсов в пачке, время обновления информации.
 - 34. ЭТХ РЛС. Зона обзора и дальность обнаружения цели.
 - 35. Измеряемые координаты с помощью РЛС.
 - 36. Система ВРЛ. Принцип кодирования запросных и ответных кодов.
- 37. Технические параметры РЛС. Мощность, форма и длительность импульсов.
- 38. Технические параметры РЛС. Методы обзора ВП и измерения координат.

Примерный перечень вопросов для проведения промежуточной аттестации в форме экзамена в 9 семестре

- 1. ВРЛ Корень-АС. Общие сведения об ВРЛ.
- 2. ВРЛ Корень-АС. Система ТО и ремонта.
- 3. ВРЛ Лира-ВА. Общие сведения об ВРЛ.
- 4. ВРЛ Лира-ВА. Система ТО и ремонта.
- 5. ВРЛ Крона. Общие сведения об ВРЛ.
- 6. ВРЛ Крона. Система ТО и ремонта.
- 7. ВРЛ Аврора. Общие сведения об ВРЛ.
- 8. ВРЛ Аврора. Система ТО и ремонта.
- 9. A3H-B 1090 ES (HC-1A). Общие сведения об А3H.
- 10. АЗН-В 1090 ES (HC-1A). Система ТО и ремонта.
- 11. АЗН-В: НПС Сонар. Общие сведения об АЗН.
- 12. АЗН-В: НПС Сонар. Система ТО и ремонта.
- 13. МПСН Альманах. Общие сведения о МПСН.
- 14. МПСН Альманах. Система ТО и ремонта.
- 15. МПСН Мера. Общие сведения о МПСН.
- 16. МПСН Мера. Система ТО и ремонта.
- 17. МПСН Тетра. Общие сведения о МПСН.
- 18. Системы видеонаблюдения. Общие сведения об оборудовании и системе технического обслуживания.
 - 19. Системы видеонаблюдения. Принципы применения систем.
 - 20. ВРЛ Радуга. Общие сведения об ВРЛ.
 - 21. АРП-95. Общие сведения об АРП. Основные принципы построения.
 - 22. АРП-95. Система ТО и ремонта.

- 23. АРП- 75(80). Общие сведения об АРП. Основные принципы построения.
 - 24. АРП-75(80). Система ТО и ремонта.
- 25. АРП DF-2000 «Платан». Общие сведения об АРП. Основные принципы построения.
 - 26. АРП DF-2000 «Платан». Система ТО и ремонта.
 - 27. АЗН-В. НПС Сота Х1. Общие сведения об АЗН.
 - 28. МПСН Тетра. Система ТО и ремонта.

Перечень типовых расчетных и логических задач для текущего контроля в форме устного опроса, оценки сформированности компетенций и промежуточной аттестации в форме экзамена в 9 семестре

- 1. Расчет максимальной дальности обнаружения средства наблюдения.
- 2. Построение зоны обзора РЛС в вертикальной плоскости без учета влияний земной поверхности.
- 3. Вычисление дальности обнаружения РЛС с учетом влияния земной поверхности.
 - 4. Построение графика углов закрытия в рабочей зоне РЛС.
- 5. Построение зоны обзора РЛС в горизонтальной плоскости , с учетом углов закрытия.

Перечень типовых ситуационных задач для текущего контроля в форме устного опроса, оценки сформированности компетенций и промежуточной аттестации в форме экзамена в 9 семестре

- **1.** Задача № **1.** Разработать программу технического обслуживания ВРЛ «Лира-ВА».
- **2.** Задача № **2.** Разработать программу технического обслуживания ВРЛ «Крона».
- **3.** Задача № **3.** Разработать программу технического обслуживания ВРЛ «Аврора».
- **4.** Задача № **4.** Разработать программу технического обслуживания АЗН-В 1090 ES (HC-1A).
- **5.** Задача № **5.** Разработать программу технического обслуживания АЗН-В: НПС «Сонар».
- **6.** Задача № 7. Разработать программу технического обслуживания МПСН «Альманах».
- 7. Задача № 8. Разработать программу технического обслуживания МПСН «Мера».

- **8.** Задача № 12. Разработать программу технического обслуживания АРП-95.
- 9. Задача № 13. Разработать программу технического обслуживания АРП- 75(80).
- **10.** Задача № 14. Разработать программу технического обслуживания АРП DF-2000 «Платан».
- **11.** Задача № **15.** Разработать программу технического обслуживания ВРЛ «Корень-АС».
- **12.** Задача № **16.** Разработать программу технического обслуживания МПСН «Тетра».
- **13.** Задача № 17. Разработать программу технического обслуживания оборудования видеонаблюдения.
- **14.** Задача № 18. Разработать программу технического обслуживания ВРЛ «Корень-АС».

10 Методические рекомендации для обучающихся по освоению дисциплины

Приступая в 8 семестре к изучению дисциплины «Радиоэлектронные средства наблюдения», студенту необходимо внимательно ознакомиться с тематическим планом занятий и списком рекомендованной литературы. Студенту следует уяснить, что уровень и глубина усвоения дисциплины зависят от его активной и систематической работы на лекциях и практических занятия. В этом процессе важное значение имеет самостоятельная работа, направленная на вовлечение студента в самостоятельную познавательную деятельность с целью формирования самостоятельности мышления, способностей к профессиональному саморазвитию.

В начале 9 семестра студент выбирает тему курсовой работы в соответствии с правилом указанном в методическом пособии, согласовывает ее с преподавателем и приступает к самостоятельному выполнению, используя типовую примеры, а также консультации, которые преподаватель проводит один раз в неделю. Защита курсовой работы проводится в конце 9 семестра и оценивается согласно п. 9.5.

В 9 семестре особое внимание уделяется развитию способностей студента в решении нестандартных задач на основе ранее изученного материала. В конце 9 семестра проводится промежуточная аттестация в форме экзамена.

При проведении всех видов занятий основное внимание уделяется рассмотрению принципов построения, работы, анализу радиоэлектронных устройств и систем, их элементов, их системы технического обслуживания и ремонта, также места применения изучаемого материала в системе радиотехнического обеспечения полетов воздушных судов.

Теоретическая подготовка студентов по дисциплине обеспечивается на лекциях. На лекциях обучаемым даются систематизированные основы научных знаний по состоянию и основным научно-техническим проблемам развития радиоэлектронных систем.

Задачами лекций являются:

- ознакомление обучающихся с целями, задачами и структурой дисциплины «Радиоэлектронные средства наблюдения», ее местом в системе наук и связями с другими дисциплинами;
- краткое, но по существу, изложение комплекса основных научных понятий, подходов, методов, принципов данной дисциплины;
- краткое изложение наиболее существенных положений, раскрытие особенно сложных, актуальных вопросов, освещение дискуссионных проблем;
- определение перспективных направлений дальнейшего развития научного знания в области авиационных радиотехнических цепей.

Значимым фактором полноценной и плодотворной работы обучающегося на лекции является культура ведения конспекта. Для повышения эффективности лекционных занятий рекомендуется до начала занятий самостоятельно провести предварительное ознакомление с материалом предстоящей лекции по пособию [1] и оформить краткий предварительный конспект.

Теоретические положения, излагаемые в лекциях, иллюстрируются примерами их практической реализации в радиоэлектронных системах и средствах авиационной электросвязи и передачи данных. Для облегчения восприятия студентом сложного и разнообразного материала рекомендуется изучение новых разделов курса начинать с краткого введения, в котором устанавливается связь с предыдущими и смежными дисциплинами учебного плана.

Входной контроль в форме устного опроса преподаватель проводит в начале изучения каждой новой темы.

Проведение практических занятий осуществляется после прочтения на лекциях соответствующего теоретического материала, и служит средством закрепления полученных знаний и формирования навыков и умений инженерных исследований.

Практические занятия призваны обеспечить получение студентами практических навыков и умений по проведению инженерных расчетов, а также изучение методов построения и расчета характеристик радиоэлектронных систем и их элементов, а также их системы технического обслуживания и ремонта.

На практических занятиях отрабатываются решения расчетных/логических задач и ситуационных по материалу изучаемой дисциплины. Осваиваются методы аналитического решения расчетных/логических задач и вырабатываются навыки использования имитационного и численного моделирования ситуационных задач. Значительная часть практических занятий

связана с приростом компетенций в использовании цифровых технологий в контексте цифровой трансформации профессиональной деятельности.

Все виды учебных занятий проводятся с активным использованием технических средств обучения и имеющихся в наличии образцов.

Изучение дисциплины построено таким образом, чтобы обеспечивалось наилучшее усвоение материала.

На самостоятельное изучение выносятся наиболее простые вопросы изучаемых тем. Самостоятельное изучение позволяет привить навык поиска интересующих вопросов в источниках, в том числе и дополнительных.

Самостоятельная работа обучающегося весьма многообразна и содержательна. Она включает следующие виды работы (п. 5.6):

- самостоятельный поиск, анализ информации и проработка учебного материала;
- подготовку к устному опросу (перечень типовых вопросов для текущего контроля в п. 9.6);
 - выполнение курсовой работы (темы курсовой работы в п. 9.3).

Итоговый контроль знаний студентов по темам дисциплины проводится в формах защиты курсового проекта и выполнения заданий практических занятий, а по семестрам – в виде зачета и экзамена.

Примерный перечень вопросов для зачетов по дисциплине «Радиоэлектронные средства наблюдения» приведен в п. 9.6. Оценочная шкала для курсовой работы описана в п. 9.5. Примерный перечень вопросов для экзамена по дисциплине «Радиоэлектронные средства наблюдения», а также типовые задачи для экзамена также приведены в п. 9.6.

Рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по специальности 25.05.05 «Эксплуатация воздушных судов и организация воздушного движения» специализации «Организация радиотехнического обеспечения полетов воздушных судов».

Программа рассмотрена и утверждена на заседании кафедры Радиоэлектронных систем (№12) «25» мая 2021 года, протокол №8.

Разработчик:	In 1	/	
К.т.н.	18/18/ Bleenie		Пономарев В.В.
(ученая степе	нь, ученое звание, фамилия и	инициалы разработчи	
Заведующий кафедро	ой №12 «Ралиоэлектр	онные системы:	>>
1 11			
Д.т.н., с.н.с.	and the second		Кудряков С.А.
(ученая степень, у	ченое звание, фамилия и иниц	иалы заведующего кад	
			•
Программа согласова	на:		
Р	DO TO		
Руководитель ОПОП	BO	1 .	
Д.т.н., с.н.с.			Кудряков С.А.
(ученая степень, у	ученое звание, фамилия и ини	циалы руководителя С	ОПОП)
Программа рассмотр	рена и одобрена на за	седании Учебно	о-методического
совета Университета «		2021 года, про	